
Bachelorarbeit

Automated Scanning for

Web Cache Poisoning Vulnerabilities

Maximilian Hildebrand

September 2021

Gutachter:

JProf. Dr.-Ing. Ben Hermann

Prof. Dr.-Ing. Juraj Somorovsky

Technische Universität Dortmund

Fakultät für Informatik

Programmiersysteme (LS-5)

https://sse.cs.tu-dortmund.de

In Kooperation mit:

Hackmanit GmbH

https://hackmanit.de

Acknowledgments

I would like to thank my supervisors Ben Hermann and Juraj Somorovsky for their guidance

and advice. Many thanks to my father Robert Hildebrand and my advisor Karsten Meyer

zu Selhausen for proofreading comprehensively and handing out advice. I am extremely

thankful to my parents Robert Hildebrand and Sabine Hildebrand for supporting me at all

times. Last but not least, this thesis would not have been possible without the love and

support of my wife Natalie Hildebrand and my daughter Kira Hildebrand.

3

Abstract

Due to the ever-growing amount of discovered attack vectors and techniques to exploit

them, it is important to test for vulnerabilities in an e�cient way. Automated scanners help

to cover the consistently growing attack surface. In this thesis, a self-developed scanner,

which tests websites for a vulnerability called �web cache poisoning�, is introduced. This

scanner is then used to test 51 of the world's most frequently visited websites and several

ten thousand of their subdomains. The results showed that 11 of the 73620 tested URLs

are vulnerable to web cache poisoning. Interestingly, they all were vulnerable to the same

technique called �unkeyed header poisoning�. In addition to the 11 weaknesses, 85577 false

positives were identi�ed during the tests. The causes for this large number of false positives

could be identi�ed and a mitigation is presented.

5

Contents

1 Introduction 1

2 Foundations 3

2.1 Web Caches . 3

2.2 Web Site Vulnerabilities . 4

2.3 Web Cache Vulnerabilities . 5

2.3.1 Web Cache Poisoning Impact . 5

2.3.2 Web Cache Poisoning Preconditions 6

2.3.3 Web Cache Poisoning Techniques . 7

2.3.4 Web Cache Poisoning Countermeasures 15

2.3.5 Web Cache Deception . 16

2.4 Burp Suite . 17

2.5 Bug Bounties . 18

3 Web Cache Vulnerability Scanner 19

3.1 Use Cases . 19

3.2 Contestants . 20

3.3 Key Features . 22

3.4 Program Flow . 23

3.5 Hit or Miss Indicatros . 26

3.6 Cachebusters . 26

3.7 Successful Poisoning Indicators . 28

3.8 Implementation of Web Cache Poisoning Techniques 29

3.9 Setup and Usage . 32

4 Testing for Web Cache Poisoning 35

4.1 Selection of Websites . 35

4.2 Test Approach . 37

4.3 Statistics . 39

4.4 Found Web Cache Poisoning Vulnerabilities 41

4.5 False Positives . 45

i

ii CONTENTS

4.6 False Positives Countermeasures . 48

5 Conclusion 49

A Additional Information 51

A.1 WCVS Help Output . 52

A.2 Report Template . 53

List of Listings 55

List of Figures 57

List of Tables 59

Bibliography 63

A�davit 65

Chapter 1

Introduction

New attack vectors and techniques to exploit them are discovered constantly. Hence, it

is important to test for them e�ectively in order to cover the ever-growing attack surface.

Scanners help security professionals by covering a wide variety of attack techniques and

automating repetitive tasks which are needed in order to test these attack techniques.

Thus, they speed up and enhance testing procedures in order to ensure the security of

systems in question. Web cache poisoning is a vulnerability where an attacker can impact

HTTP responses which are served to users after requesting a certain resource, such as

a website. This type of vulnerability was discovered in 2004 [1]. Since then many new

techniques for this vulnerability have emerged. In particular, in the last three years sev-

eral whitepapers and elaborate blog posts disclosed new web cache poisoning techniques

[2][3][4][5][6][7]. While there are already some speci�c scanners for identifying web cache

poisoning, they have shortcomings which weaken their e�ectiveness or even their overall

usefulness. The two most outstanding shortcomings are the lack of automation possibilities

and the missing support for a great variety of techniques. These shortcomings increase the

e�ort of time necessary due to manual testing, while leaving many web cache poisoning

techniques untested. This situation led to the development of a new web cache poisoning

scanner called Web Cache Vulnerability Scanner (WCVS). In march 2021, the development

of WCVS was started as a student project at the IT security company Hackmanit. While

the scanner's core functionalities were implemented prior to this thesis, the scanner was

enhanced by new techniques.

The main goals of this thesis were to implement �ve new web poisoning techniques,

validate the reliability of WCVS and to prove its e�ectiveness to �nd web cache poisoning.

This was done by testing 51 of the world's most frequently visited websites and several ten

thousand of their subdomains. Afterwards, the results were analyzed with focus on the

identi�ed vulnerabilities and the occurring false positives. The structure of this thesis is

the following. Chapter 1 is this introduction. Chapter 2 covers the fundamentals of the

topics needed throughout this thesis. The di�erent web cache poisoning techniques are

1

2 CHAPTER 1. INTRODUCTION

explained and correlated on the basis of their impact and their preconditions. Chapter 3

introduces WCVS by presenting its structure and implementation of web cache poisoning

techniques. Also the strategy of WCVS to analyze caching behavior in order to �nd so-

called �cachebusters�, which are mandatory to test for web cache poisoning, is described.

Chapter 4 deals with the preparations to test websites for web cache poisoning and with

the evaluation of the results. Chapter 5 �nishes this thesis with a conclusion.

Chapter 2

Foundations

This chapter will strengthen the fundamentals needed throughout this thesis in four sec-

tions. These de�nitions will be needed in the later chapters: The �rst section describes

the function of web caches, why they are important and what types of caches exist. The

second section introduces three types of web vulnerabilities that are used during examples

in this thesis. The third section speci�es two classes of web cache vulnerabilities: web

cache poisoning and web cache deception. The fourth section succinctly describes a tool

called �Burp Suite� and why this tool is relevant in the following chapters.

2.1 Web Caches

A web cache is located between a client and a web server. Its function is to relieve the

webserver from repetitive identical requests. Unknown requests are passed through to

the webserver and the answer from the web server is stored for later use. If an already

known request is detected, the web cache delivers the stored content back to the client

without contacting the web server. This functionality can be limited to certain requests,

for example static resources such as CSS or JavaScript �les, by con�guring the web cache.

To identify an already known request a so-called �cache key� is used. This cache key consists

of speci�ed parts of the HTTP request, for instance the domain, path and headers. Parts

of the HTTP request which are included in the cache key are called �keyed�, while those

parts which are not included in the cache key are called �unkeyed�. When a client issues an

HTTP request the web cache generates the corresponding cache key and checks whether

it has a copy stored for this cache key. If that is the case, the web cache directly responds

with the stored copy. Otherwise, the web cache forwards the request to the web server.

The web cache stores the response of the web server and forwards it to the client. The web

cache can be con�gured, which parts of the request are included in the cache key and which

are not. Also it can be speci�ed how long a copy is stored by the web cache, for example

for thirty seconds. The attacker needs to either predict the moment that the cache gets

3

4 CHAPTER 2. FOUNDATIONS

cleared, send as many requests as possible to raise his chances or be lucky to send the �rst

request to an empty cache. Throughout this thesis it is assumed that the attacker manages

to get his requests cached either way. Web caches are widely used because of their great

bene�ts for websites. Their advantages include reducing network tra�c, network latencies

and the load on web servers and their databases [8][9]. There are multiple types of web

caches that can be classi�ed into shared and private ones [10][11]. Private web caches

only store copies for one user, whereas shared web caches store copies for multiple users.

Reverse proxy servers, forward proxy servers, web servers, web frameworks and templates

may contain a shared web cache. Content delivery networks (CDN) are a group of servers

which can be spread around the world to provide fast access to content. Clients send their

requests to �edge servers� which often use a shared web cache [12]. More than 74% of the

alexa top 1k websites were found to use a CDN [13]. Those shared web caches can often

be modi�ed to store copies per user via the cache-control directive [14, Section 5.2.2.6], in

order to use them as private caches. Throughout this thesis the term web cache will refer

to a reverse proxy containing a shared web cache for uni�cation.

2.2 Web Site Vulnerabilities

Websites can have many di�erent kinds of vulnerabilities. Some of them can be more

harmful when they are combined with web cache poisoning, which will be explained in the

following subchapter. Three vulnerabilities which are used for examples throughout this

thesis are the following:

Cross site scripting (XSS) [15]: A website which is vulnerable to XSS enables an at-

tacker to inject malicious javascript code, called XSS payload, to it. When a web

server returns in its response a part of the unsanitized user input which contains the

XSS payload it is called re�ected XSS. An attacker has to trick a user into issuing

a malicious HTTP request, for example by sending the user a link where the XSS

payload is embedded into the query string. If a XSS payload is stored on the server,

such as in the database, it is called stored XSS. In that case no user interaction

is needed. To prevent XSS vulnerabilities user input needs to be �sanitized�. This

means that the website ensures that the user input doesn't contain any valid XSS

payload.

Denial of service (DOS) [16]: The goal of a DOS attack is to make a website unavail-

able. This can be done in multiple ways, for instance a web server can be over�ood

with packets until the web server's capacity is overloaded. If an attacker tricks a

web server into issuing an error response after requesting a certain web page and the

web cache stores this error response, this would also be considered a DOS. As users,

which want to request the earlier requested web page, will receive the error response

2.3. WEB CACHE VULNERABILITIES 5

Impact Technique

1 2 3 4 5 6 7 8 9

Malicious Content Injection (x) (x) (x) (x) (x) x

Open Redirect (x) (x) (x) (x) (x)

Denial of Service (x) (x) (x) (x) x x x x

Table 2.1: Impact of the di�erent web cache poisoning techniques.

instead of the web page. Another way is to cache a redirect, as explained in the

following vulnerability.

Open redirect [17]: In a so-called �open redirect� an attacker is able to trick a web server

into redirecting a user to an arbitrary, potentially malicious, website. The redirection

can either be an intended feature or an oversight, if for example the web framework

uses a speci�c header to issue a redirect instead of its otherwise normal response. An

open redirect can also be considered as a denial of service if it gets cached and all

users are prevented from accessing a website because they get redirected to another

website or to a not available server.

2.3 Web Cache Vulnerabilities

Despite their advantages, web caches also have disadvantages, as they allow new attack

vectors such as web cache poisoning and web cache deception. The di�erence between the

both attack vectors is the following. During web cache poisoning an attacker aims to store

a malicious response in the web cache which gets served to other users. During web cache

deception an attacker tricks a victim to use a modi�ed link which tricks the web cache to

store a web page which would not be cached otherwise. Afterwards the attacker can use

the same link to receive the cached web page. The focus of this thesis lies on web cache

poisoning and not on web cache deception. But as web cache deception can be accidentally

found when testing for web cache poisoning, it will be explained shortly at the end of this

subchapter.

2.3.1 Web Cache Poisoning Impact

Table 2.1 illustrates the typical impact of web cache poisoning, which are malicious content

injection, redirection and denial of service. The numbers one to nine reference di�erent

web cache poisoning techniques, which will be clari�ed in Section 2.3.3. A x indicates that

a successful exploitation of this technique leads to the corresponding impact. Whereas a

(x) indicates that this impact may be possible but depends on the website already being

vulnerable to this kind of exploit. The impact of those vulnerabilities is often increased

6 CHAPTER 2. FOUNDATIONS

when they are used in combination with web cache poisoning. Further details on the

improved impact will be mentioned during the clari�cation of each technique. Malicious

content injection means that an attacker can either inject a malicious payload, such

as XSS, in the body of the cached response or that the attacker even has complete control

over the cached response. The latter is only the case for technique 6 namely HTTP

Response Splitting. HTTP Response Splitting is also the only technique where this is

a guaranteed impact. For technique 1-5 it is only potential and depends on the website

having a content injection vulnerability. Open Redirect is, when it is a possible impact,

only potential. It always requires the website to have a redirect ability which can be

triggered with either headers or parameters. As technique 6 HTTP Response Splitting

enables the attacker to have full control over the cached response, they could also generate

a redirect response. However, this would lessen the impact. The attacker can generate an

arbitrary response which will be issued by the targeted web server. While a direct redirect

could be noticed by a victim. Denial of Service can be accomplished with three

di�erent techniques by the web cache poisoning techniques. Technique 7-9 trick the web

server to return an error page instead of the requested web page. If the web cache stores

this response, users who try to access the web page will receive the error page instead.

Technique 6 namely HTTP Request Splitting entangles the web cache which response of

the web server belongs to which request. This can lead to users trying to access web

page X receiving always the cached response for web page Y instead; Thus Denying the

access to web page X. Technique 1-4 fully depend on the website and may di�er from every

website. The impact of Denial of Service is only potential for them and will be further

discussed when the techniques are clari�ed. Four techniques rely solely on the website

having already one of these three vulnerabilities. If the website does not have any of these

vulnerabilities any of these four web cache poisoning will have no impact, even if they are

successful. In case that a website has two or more of these three vulnerabilities, it is up to

the attacker which one of these they want to utilize. Four other techniques only have one

possible impact, however they do not rely on the website having another vulnerability. If

these four techniques are successful the impact is guaranteed. One technique has DOS as

guaranteed impact and the other two impacts are potential, depending on if the website is

already vulnerable to a redirect or malicious content injection.

2.3.2 Web Cache Poisoning Preconditions

Table 2.2 illustrates the preconditions which need to be met in order for the web cache

poisoning techniques to be possible. Just like Table 2.1, the numbers one to nine ref-

erence di�erent web cache poisoning techniques, which will be clari�ed in Section 2.3.3.

Unharmonized configuration indicates that the web server and the web cache are

con�gured di�erently and that this di�erence can be exploited to achieve web cache poison-

2.3. WEB CACHE VULNERABILITIES 7

Precondition Technique

1 2 3 4 5 6 7 8 9

Unharmonized con�guration x x x

Non-compliant with RFC x x x x

Header with impact x (x) x1 x

Parameter with impact x x x x2

Unkeyed header (x) (x) (x1) x x (x)

Unkeyed parameter (x) x (x2)

Table 2.2: Preconditions of the di�erent web cache poisoning techniques.

ing. Non-compliant with RFC indicates that either the web server or the web cache

needs to be non-compliant with a certain RFC. Header with impact has two di�erent

indications. For technique 4 and 9 it is indicating that a particular header which overrides

the HTTP method, such as X-HTTP-Method-Override, needs to be supported by the web

server. As this is only needed for 1 of 3 variants of technique 4 a (x) was used instead of

a x. For technique 1 and 4 it is indicating that an arbitrary header, whose name or value

has an impact on the response, is needed. In both cases the particular header has to be

unkeyed. Parameter with impact is indicating that an arbitrary parameter, which

has an impact on the response, is needed. This parameter has to be unkeyed for technique

2 and technique 6. Technique 3 and 4 can be used to bypass that the impactful parameter

is keyed. In exchange they have more preconditions than technique 2. The impact that

Header with impact and Parameter with impact is referring to depends solely

on the website. If a header or parameter is re�ected in the body this could lead for ex-

ample to malicious content injection, such as XSS. If the header or parameter triggers

a redirect, this would be an Open Redirect. In case that for example an error page or

empty page is returned, this would be a DOS. There might be further impacts depending

on the functions of the website. x1 and x2 at the column of technique 6 indicate that

either one of them has to be true. Unkeyed header indicates that an unkeyed header

is needed for this technique to be successful. A x means that this can be any arbitrary

header, as long as it is an unkeyed header. A (x) means that the header with impact

has to be unkeyed. Unkeyed parameter indicates the same as unkeyed header but for

a parameter. A x means that any arbitrary header is possible, as long as it is unkeyed. A

(x) means that the parameter with impact has to be unkeyed. All techniques aside from

technique 5 HTTP Request Smuggling need either an unkeyed header or parameter. 6 of

the 8 techniques require an unharmonized con�guration of the web server and web cache

or a non-compliance with a speci�c RFC of the web server or web cache.

2.3.3 Web Cache Poisoning Techniques

8 CHAPTER 2. FOUNDATIONS

Listing 2.1: Request with cache key �example.com/index.php�

1 GET /index.php?user=max HTTP/1.1

2 Host: example.com

3 Cookie: uuid=0bd0a3a4-02f8-4971-afbf-7fe00421337e

Listing 2.2: Response to previous request

1 200 OK

2 [...]

3 <p>Welcome back max</p>

4 [...]

Listing 2.3: Malicious request with cache key �example.com/index.php�

1 GET /index.php?user=<script src=att.ac/ker.js></script> HTTP/

1.1

2 Host: example.com

3 Cookie: uuid=1ba0d3f4-03f8-4961-afbc-7fe00421337e

Listing 2.4: Response to previous malicious request

1 200 OK

2 [...]

3 <p>Welcome back <script src=att.ac/ker.js></p>

4 [...]

Common Flow for Most Techniques Unkeyed input is every part of an HTTP request

that does not in�uence the cache key, whereas keyed input is every part which is used to

generate the cache key. In Listing 2.1 and 2.3 keyed input is visualized in bold. While both

requests have the same cache key �example.com/index.php� they di�er in their responses,

which are illustrated in Listing 2.2 and 2.4. The body of the second response contains XSS

which was injected by the attacker using the user parameter. If the cache currently does

not have a cached response for the cache key �example.com/index.php� and the attacker

is the �rst to send the request, the response containing the XSS would get cached. All

users requesting �example.com/index.php� now receive the malicious response from the

web cache. All techniques, besides technique 5 HTTP Request Smuggling, utilize such

a factor that there is a possibility to trigger a di�erent, potentially malicious, response

without changing the cache key.

2.3. WEB CACHE VULNERABILITIES 9

1. Unkeyed Header Poisoning

� Preconditions: Unkeyed header poisoning has two preconditions. First, there has to

be a header which has an impact on the response of the website. Second, this header

has to be unkeyed. An impact is for example, that the name or value of the header

is re�ected in the header or the body of the response or that the header leads to a

redirect.

� Flow: If the preconditions are met an attacker can send a request which contains this

impactful header. The response which is returned by the web server now contains for

example a redirect to the value of the impactful header. This response gets cached

by the server. Other users requesting the same web page will receive the cached

response, as the impactful header is unkeyed and does not change the cache key.

� Impact: The impact of unkeyed header poisoning relies solely on the impact of the

unkeyed impactful header. This can be for example malicious content injection, such

as XSS, an Open Redirect or a DOS. If the website does not have any unkeyed

impactful header this technique cannot be conducted.

A few examples for headers which might have, depending on the website, an impact are

the following (found in [2],[4]): The X-Forwarded-Host header could, sometimes in com-

bination with the X-Forwarded- Scheme header, lead to an Open Redirect or XSS. The

X-Forwarded-Port header might change the port the request is forwarded to and therefore

lead to DOS. The X-Original-URL or X-Rewrite-URL could change the path of the request

and therefore lead to an Open-Redirect. The Transfer-Encoding set to a not valid value can

trigger a 501 Not implemented response which might be stored by a web cache and result

in DOS. The Max-Forwards header set to 0 could result in the web server not processing

the request and only returning the request as the response body leading to a DOS.

2. Unkeyed Parameter Poisoning The preconditions, �ow and impact are similar to

unkeyed header poisoning. The only di�erence is, that instead of an unkeyed impactful

header an unkeyed impactful parameter is used. If no unkeyed impactful parameter can be

found, still a keyed impactful parameter can be used by technique 3. Parameter Cloaking

and technique 4. Fat GET.

3. Parameter Cloaking

� Preconditions: There are three di�erent preconditions that all must be met. The

�rst precondition is that there has to be an keyed impactful parameter (in contrast

to unkeyed parameter poisoning). The second precondition is that there has to be an

arbitrary unkeyed parameter. The third precondition is that the web cache and web

server need to be con�gured unharmonized in respect to the parameter delimiters.

10 CHAPTER 2. FOUNDATIONS

Listing 2.5: Fat GET request

1 GET /index.html?lang=de HTTP/1.1[CRLF]r]

2 Host: target.com

3 Content-Length: 7

4

5 lang=pl

While RFC 3986 [18, Section 2.2] allows & and ; as query parameter delimiters,

many web caches or web frameworks don't treat ; as a delimiter.

� Flow [5]: Let the parameter imp1 be an impactful parameter and the parameter

unk2 an unkeyed parameter. An attacker can create a malicious URL by exploit-

ing an unharmonized con�guration of a web server and web cache. This malicious

URL has the query string �imp1=foo&unk2=bar;imp1=malicious�. Ruby on Rail

interprets this query string as three query parameters: �imp1=foo�, �unk2=bar� and

�imp1=malicious�. The last occurence of imp1 would override the previous one,

so that imp1 has the value �malicious�. A web cache which does not honor ; as

a query parameter delimiter interprets the query string as only two query param-

eters: �imp1=foo� and �unk2=bar;imp1=malicious�. As unk2 is unkeyed - which

is often the case for tracking and marketing parameters - the cache only includes

�imp1=foo� in the cache key even if Ruby on Rails uses �imp1=malicious�. Therefore

the malicious value of imp1 was cloaked by the unkeyed query parameter unk2.

� Impact: The impact of parameter cloaking solely depends on the impactful query

parameter, just like unkeyed parameter poisoning and fat GET does.

4. Fat GET

� Preconditions: There are two to four preconditions, depending on the three variants.

All variants need an keyed impactful parameter, as �rst precondition, and an unhar-

monized con�guration, as second precondition. Although RFC 7230 [19, Section 3.3]

allows the use of a request body during a GET request it is very uncommon. Hence

the con�guration of a web cache might not include the request body in the cache key,

while the website processes the request's body. If the website does not process the

request's body the �rst variant is not possible and the other variants, which require

more preconditions can be tried. They might trick the web server into processing the

body. The third precondition for the second variant is that the web server supports

the POST HTTP method. The third precondition for the third variant is that a

2.3. WEB CACHE VULNERABILITIES 11

Listing 2.6: HTTP request smuggling example [21]

1 POST /index.html HTTP/1.1[CRLF]

2 Host: target.com[CRLF]

3 Content-Length: 0[CRLF]

4 Content-Length: 62[CRLF]

5 [CRLF]

6 GET /poison.html HTTP/1.1[CRLF]

7 Host: target.com[CRLF]

8 HeaderWithSpace: [Only a space and no CRLF]

9 GET page_to_poison.html HTTP/1.1[CRLF]

10 Host: target.com[CRLF]

11 [CRLF]

header such as �X-HTTP-Method-Override: POST� is supported and unkeyed. This

might change the HTTP method to POST.

� Flow [5]: The fat GET technique enables an attacker to overwrite the value of a

keyed parameter, without changing the cache key. In contrast to parameter cloaking,

the URL remains una�ected. Instead, as Listing 2.5 shows, the query parameter,

which shall be poisoned, is written into the body with the malicious value. Some

frameworks, such as Ruby on Rails, read the body of GET requests as well and prefer

body parameters over query parameters. According to the RFC 7231 [20, Section

4.3.1] it is an allowed but also uncommon behavior. If a framework ignores the body

of GET requests it might be possible to use X-HTTP-Method-Override: POST

or similar headers to change the method to POST or even immediately send a POST

instead of a GET request. For this technique to work the body, HTTP method, and

- if used - the X-HTTP-Method-Override header must not be part of the cache

key.

� Impact: The impact of fat GET solely depends on the impact of the impactful query

parameter, just like unkeyed parameter poisoning and parameter cloaking.

5. HTTP Request Smuggling (The explanation of this method has been basically

described in [21] and was enhanced by content of the related RFCs)

� Precondition: HTTP Request Smuggling is the only technique which does not require

any unkeyed header or parameter. Its only requirement is non-compliance with RFC

2616 [22, Section 4.4]. There are two ways to specify the content length. First

the Content-Length header, which indicates how many bytes long the content

12 CHAPTER 2. FOUNDATIONS

Listing 2.7: Common request to HTTP response splitting vulnerable website and its response [1]

1 http://www.example.com/redirect=http://www.foo.bar/

1 HTTP/1.1 301 Moved Permanently

2 Location: http://www.foo.bar/

is. Second the Transfer-Encoding: Chunked header, which allows it to send

and receive chunks of the content independently from each other. If the content is

divided into multiple chunks, a hexadecimal number in front of each chunk speci�es

how long the corresponding chunk is. The last chunk doesn't contain any content

and is announced with the number 0. RFC 2616 [22, Section 4.4] declares that

if both the Content-Length and the Transfer-Encoding header is used, the

Content-Length header must be ignored. However, not every web cache or web

server complies to this RFC. The web cache might utilize the Content-Length

header, while the web server might utilize the Transfer-Encoding header, or

vice versa. Likewise, an attacker could send two Content-Length headers and

the web cache and web server might utilize the respective other one. If one of those

prerequisites is met, an attacker could try to exploit HTTP request smuggling.

� Flow: Listing 2.6 illustrates such an attack. In this example the web cache is utilizing

the second Content-Length header, while the web server utilizes the �rst one. As

the web cache assumes that the content has a length of 62, it considers line 6-8 as

body of the �rst request. The lines 9-11 are interpreted as a second request because

the previous request was already completed. The web server on the other hand

assumes that the content length is 0, because it utilizes the �rst Content-Length

header. Hence the web server interpretes the lines 1-5 as the �rst request and the

lines 6-11 as the second request. The line 9 will be considered as the value of the

HeaderWithSpace header at line 8, because the header is only followed by a space

and no CRLF. If the second request gets cached, every user who tries to access

http://target.com/page_to_poison.html will instead receive a copy of the

response of http://target.com/poison.html.

� Impact: A guaranteed impact is that the access to a web page can be denied, because

the web cache returns the cached response from another web page of the web server.

If this other web page contains any vulnerability, such as XSS, this vulnerability is

also served to users who try to access the original web page.

6. HTTP Response Splitting

2.3. WEB CACHE VULNERABILITIES 13

Listing 2.8: HTTP response splitting request [1]

1 http://www.example.com/redirect=http://foo.bar/%0d%0a%0d%0aHT

TP/1.1%20200%20OK%0d%0aContentType:%20text/html%0d%0aContent-

Length:%2022%0d%0a%0d%0a<html>malicious</html>

Listing 2.9: HTTP response splitting response [1]

1 HTTP/1.1 301 Moved Permanently

2 Location: http://www.foo.bar/

3

4 HTTP/1.1 200 OK

5 Content-Type: text/html

6 Content-Length: 22

7

8 <html>malicious</html>

� Precondition: There are two preconditions. The �rst one is that there is either an

unkeyed header or an unkeyed parameter which is re�ected in a header of the HTTP

response. The second one is a non-compliance with RFC 3986 [18, Section 2.2],

which prohibits meta characters in a URL, and RFC 7230 [19, Appendix A.2], which

prohibits meta characters in a header.

� Flow [1]: If input from an HTTP request is re�ected unsanitized in a header of

the HTTP response, HTTP response splitting might be possible. Types of headers

which most commonly re�ect parts of an HTTP request are the Location header of a

redirection response or either the name or value of a cookie. To exploit a vulnerable

web cache an attacker sends two requests. The �rst request tries to manipulate the

web server to generate a response that is interpreted as two responses by the web

cache. The second request is a common request which targets the web page the

attacker wants to poison. The web cache matches the second response of the �rst

malicious request to the innocent second request. Listing 2.7 shows a website which

redirects to any website by using the redirect parameter. An attacker could now

insert two CRLFs to generate a second response with arbitrary content. The web

cache might not distinguish if that second response was generated by the web server

or injected by an attacker. Listing 2.8 illustrates a request which exploits HTTP

response splitting. The value of the query parameter redirect is URL encoded.

The corresponding response can be seen in Listing 2.9. The web server URL decodes

the value of redirect and writes it, without checking on malicious content, as value

14 CHAPTER 2. FOUNDATIONS

of the Location header at lines 2-8. The web cache interprets the 301 response at

lines 1-3 as response for the �rst request and the 200 response at lines 4-8 as response

for a second innocent request sent by the attacker. This innocent request might be

something simple as http://example.com/page_to_poison.html. If users

try to access http://example.com/page_to_poison.html, they will receive

a copy of the 200 response with arbitrary content generated by the attacker.

� Impact: This technique has the highest impact of all these web cache poisoning

techniques as an attacker can create an arbitrary response.

7. HTTP Header Oversize (HHO) (The basic explanation of this method has been

found in [6] and was enhanced by additional content from related RFCs and header size

limits)

� Precondition: There are three preconditions. First, there has to be an arbitrary

unkeyed header. Second, there has to be an unharmonized con�guration between

the web cache and the web server. The web cache needs to have an either slightly

lower, equal or arbitrary higher header size limit than the web server. Last, the web

cache needs to be non-compliant to the RFC 7231 [20, Section 6.1] which states that

only 404 Not Found, 405 Method Not Allowed, 410 Gone and 501 Not

Implemented are allowed to be cached.

� Flow: Most web caches and web servers have a size limit for HTTP request headers.

The default limit for the web servers Apache and NGINX is for example 8190 bytes1,2.

CDNs such as Akamai and Cloud�are on the other hand accept by default requests

with a header size of up to 16000 bytes or even 32000 bytes [23][6]. If the size limit

is exceeded a �413 Entity too large�, as speci�ed by RFC 2616 [22, Section 10.4.14]

or falsely a �400 Bad request� answer is returned by the web server. If the web cache

has a higher size limit than the web server, the web cache might forward a request

which exceeds the size limit of the web server. The web server then returns an error

which might get stored by the web cache and served to other users with the same

cache key. Current research [7] shows that an attacker could also exploit HHO if the

web cache and web server have the same size limit or the size limit of the web cache

is even a few bytes lower. This is possible if the web cache normalizes headers or

adds new headers, for instance X-Forwarded-For.

� Impact: The only impact of this technique is a DOS. A web page cannot be accessed

as the web caches returns a cached error response.

1https://httpd.apache.org/docs/current/mod/core.html#limitrequestfieldsize
2https://nginx.org/en/docs/http/ngx_http_core_module.html#large_client_

header_buffers

https://httpd.apache.org/docs/current/mod/core.html#limitrequestfieldsize
https://nginx.org/en/docs/http/ngx_http_core_module.html#large_client_header_buffers
https://nginx.org/en/docs/http/ngx_http_core_module.html#large_client_header_buffers

2.3. WEB CACHE VULNERABILITIES 15

8. HTTP Meta Character (HMC) (The basic explanation of this method has been

found in [6] and was enhanced by additional content from related RFCs)

� Precondition: There are two preconditions. First, it is required that the web cache

is non-compliant to the RFC 7231 [20, Section 6.1] which states that only 404 Not

Found, 405 Method Not Allowed, 410 Gone and 501 Not Implemented

are allowed to be cached. Second, the web cache needs to ignore meta characters in

headers, which are stated as illegal in RFC 7230 [19, Appendix A.2], while the web

server correctly issues an error response.

� Flow: A potentially harmful meta character such as \n, \r, \a or \0 can be included

in any header. If the cache forwards this request and the web server responds with

�400 Bad Request� the response might be stored by the web cache.

� Impact: Similar to HHO, the only impact of this technique is a DOS. A web page

cannot be accessed as the web caches returns a cached error response.

9. HTTP Method Override (HMO) (The basic explanation of this method has been

found in [6] and was enhanced by additional content from related RFCs)

� Precondition: This technique has two preconditions. First, the web server has to sup-

port a header which changes the HTTPMethod, such as X-HTTP-Method-Override,

X-HTTP-Method or X-Method-Override. Second, this header has to be unkeyed.

� Flow: The headers X-HTTP-Method-Override, X-HTTP-Method or X-Method-Override

can override the method of a request. Using POST, PUT, DELETE or something ar-

bitrary as value might result in the server returning �404 Not Found� or �501 Not

Implemented� if the method is not supported or �405 Method Not Allowed� if the

method is not allowed. All those 3 error responses are cacheable according to the

RFC 7231 [20, Section 6.1]. If those headers are unkeyed the same error response

might be served from the web cache to other users, leading to a DOS.

� Impact: Similar to HHO and HMC, the only impact of this technique is a DOS. A

web page cannot be accessed as the web caches returns a cached error response.

2.3.4 Web Cache Poisoning Countermeasures

To preclude web cache poisoning website operators need to make sure that the preconditions

are prevented. As can be seen from the Table 2.2, 4 of the 9 web cache poisoning techniques

would not be possible if both the web server and the web cache would fully comply with

certain RFCs. However, research shows that web caches [10] and web servers [6] often

do not or only partially comply with these RFCs. While vendors improve their RFC

16 CHAPTER 2. FOUNDATIONS

compliance to prevent web cache poisoning vulnerabilities [6] website operators need to

wait until these are prevented, decide on a web server and web cache which is compliant

to the needed RFCs or con�gure the web cache to behave correctly. For example if a web

cache caches error responses which should not be cached according to the RFC 7231 [20,

Section 6.1], such as �400 Bad Request�, is cached by default, website operators should

con�gure the cache to not cache such an error response. Also it is important for website

operators to make sure that the web server and web cache are harmonized. Otherwise, an

attacker might exploit any discrepancies in the con�guration, such as di�erent limits for the

header size, as shown with technique 7 HTTP Method Override. Table 2.2 also illustrates

that 6 out of the 9 techniques can be prevented if every header and parameter with impact

is keyed. Further 2 techniques can be prevented if all headers and parameters are keyed.

Technique 5 HTTP Request Smuggling is the only technique which does not depend on

unkeyed input and therefore is also the only technique which cannot be prevented this way.

It is also the only technique which has only one precondition. The only countermeasure

for HTTP Request Smuggling is to check and enforce the RFC compliance. Also keying

every header has a negative impact on the performance as the cache keys will di�er more.

For example the User-Agent header depends on the used browser, the browser's version

and the OS's version. Thus, 10 di�erent users with di�erent user-agents would all have

a di�erent cache key. Hence, if each of the 10 users requested the same web page, each

of them would receive a response from the web server and not a cached copy. For this

reason, website operators need to gauge if keying every header is a good decision. While

keying every header and parameter prevents 8 out of the 9 techniques, preventing the four

preconditions �Unharmonized con�guration�, �Non-compliant with RFC�, �Header with

impact� and �Parameter with impact� defeats every technique and is also better for the

performance, which is the primary demand for a web cache.

2.3.5 Web Cache Deception

While web cache poisoning was known since 2004 [1], web cache deception wasn't known

until 2017 [24]. It is, besides web cache poisoning, another attack, which is only possi-

ble due to web caches. A web cache is tricked into storing a response which shouldn't

be cached, such as a web page with personal information or authentication tokens. Af-

terwards, the attacker can receive the cached copy by issuing a request with an identical

cache key and steal the user's information. One way to trick the cache into storing a

response is to append a nonexistent css or image �le to the end of a URL. For example,

https://www.example.com/sensitiveinformation.php/nonexistent.jpgmight

be interpreted as a simple https://www.example.com/sensitiveinformation.php

by the web server. The web cache instead might interpret it as a jpeg �le and, as image �les

are most often cached, will cache the response. Web cache deception depends in contrast

2.4. BURP SUITE 17

to web cache poisoning on user interaction, as the user needs to be tricked into using a

malicious link. 340 of the Alexa Top 5k websites were tested for web cache deception in

2020 and 10,8% of them were found to be vulnerable.

Figure 2.1: The HTTP proxy feature of Burp Suite

2.4 Burp Suite

Burp Suite3 is a web penetration testing framework which combines many features to test

websites and will be mentioned throughout the following 2 chapters. The most important

features for manual testing, which will be of importance in Section 4.4, are the HTTP proxy

- shown in Listing 2.1 - and the repeater - shown in Listing 2.2. The HTTP history shows

every request, which was routed through the Burp Suite proxy, including its response. The

history can be sorted, �ltered and searched on to look for speci�c requests or responses.

Requests can also be sent from the history to the repeater feature where a request can

be sent multiple times. Every part of a request can be easily modi�ed at the repeater for

example to change cookies, headers or the path of a request. Furthermore, Burp Suite's

features can be extended with extensions. One example of such an extension is �param-

miner�4 which can automatically scan for web cache poisoning and will be described in

Section 3.2.

3https://portswigger.net/burp
4https://github.com/PortSwigger/param-miner

https://portswigger.net/burp
https://github.com/PortSwigger/param-miner

18 CHAPTER 2. FOUNDATIONS

Figure 2.2: The repeater feature of Burp Suite

2.5 Bug Bounties

The following terminology is needed for the following chapters:

Bug bounty: A so-called bug bounty is a reward a company declares for hackers to search

for vulnerabilities and disclose them to the company. This reward can either be mon-

etary, material, such as merchandise, or immaterial, such as public acknowledgment.

Bug bounty hunter: A so-called bug bounty hunter is a loose term for anyone searching

for vulnerabilities for bug bounties.

Bug bounty program: A bug bounty program basically de�nes what is legal and allowed

to be tested and which reward is declared for this. It states for example which

domains and subdomains are allowed to be tested and how these tests are allowed to

be conducted. If bug bounty hunters follow these regulations, they cannot be called

to account legally.

Bug bounty platform: A bug bounty platform is a website where companies can an-

nounce and manage their bug bounty programs. These platforms alleviate these

processes by o�ering templates or to incur the whole management of the program.

Bug bounty hunters have a wide collection of programs to choose from when using

a bug bounty platform. Due to the templates used for the programs it is easy to

glance over the regulations.

Chapter 3

Web Cache Vulnerability Scanner

This chapter presents the Web Cache Vulnerability Scanner (WCVS) that was developed

to implement the techniques described in chapter 2. Starting from use cases for di�erent

types of users, several existing tools are evaluated to identify the important features and

still unmet customer needs. This leads to the list of key features that are the basis for

WCVS. The program �ow with its main elements is described together with the most

relevant implementation concepts. Afterwards, the implementation of each supported web

cache poisoning technique is illustrated. Lastly, the setup and usage is described.

3.1 Use Cases

Two main user groups are relevant for WCVS, penetration tester and bug bounty hunter.

Although both types of users try to discover vulnerabilities, their use case can be quite

di�erent. Table 3.1 summarizes these di�erences on the basis of a paradigmatic penetration

tester and a paradigmatic bug bounty hunter.

The paradigmatic penetration tester is a representative for all users that are

responsible for a special website, e.g., website programmers, administrators or similar

persons responsible for this site. This relevant website will be tested for many di�erent

Characteristics Penetration tester Bug bounty hunter

Websites to test 1 Countless

Crawling Thorough Minimal

Timelimit Few days None

Throttle requests No Yes

Use of a proxy Yes No

Degree of automation Some High

Table 3.1: Di�erences between a paradigmatic penetration tester and a paradigmatic bug bounty

hunter.

19

20 CHAPTER 3. WEB CACHE VULNERABILITY SCANNER

Scanner No installation CLI Report Techniques Crawler Rate limiting

WCVS x x JSON �le 9 x x

Param-miner GUI 6 extra plugin extra plugin

Fockcache x x Terminal 1

web_cache_poison.sh x x Terminal 1

Nuclei x x Terminal 1

Table 3.2: Comparison of web cache poisoning scanners.

vulnerabilities to secure the overall security. The tests are thorough to ensure that the

website is not vulnerable to known vulnerabilities. However, the time to conduct tests

is quite limited and averages out at a few days. Most likely the tests are conducted on

a non-productive system, which does not have a web application �rewall enabled. Thus,

automated scans can be run at full speed to maximize results in the limited time. The tra�c

of scanners will be, if possible, routed through a proxy, such as Burp Suite. Thereby, the

HTTP responses can be easily analyzed further if something striking was noticed. There

is some degree of automation, as tools are started automatically to speed up the testing

process. Though, each positive �nding has to be validated conscientiously. The penetration

tester might create a custom wordlist tailored for the relevant website which can be used

by scanners.

The paradigmatic bug bounty hunter on the other hand is not interested in a spe-

cial website but to �nd something in a very large number of sites. Bug bounty programs

typically provide thousands of websites, in terms of multiple domains with wildcard subdo-

mains, to test. The bug bounty hunter specializes in a few vulnerability types which will be

inspected for as many websites as possible. Thus, they do not test the entire website, but

rather up to a few di�erent pages for each website. As the tests are almost every time on

a productive system, a web application �rewall is most likely in use. This web application

�rewall might block IP addresses if too many requests per second are issued from them. So

the bug bounty hunter has to assure that they do not send too many requests in a speci�c

time frame. Another reason to throttle requests are the regulations of the corresponding

bug bounty program, as they often de�ne an allowed maximum of requests per second.

The bug bounty hunter does not need a proxy in between, as they do not intend to fully

analyze a speci�c website, but rather to cover a large amount of websites. A high degree

of automation is used in order to start multiple scanners and analyze their results.

3.2 Contestants

There are already several web cache poisoning scanners available. An overview of the Web

Cache Vulnerability Scanner and its contestants is illustrated in the Table 3.2.

3.2. CONTESTANTS 21

Detectify1, Appcheck-ng2 and Acunetix3 are comprehensive website security solutions

which claim to (also) scan for web cache poisoning. All three are on-premise security

solutions for companies and aim to replace or supplement penetration tests. As they are

on-premise solutions they are not eligible for penetration testers and bug bounty hunters.

This ranges over the licensing models and the inability to scan many di�erent domains.

Fockcache4 and web_cache_poison.sh5 are both open source web cache poisoning scan-

ners. Fockcache tests only the two X-Forwarded-Host and X-Forwarded-Scheme headers

for web cache poisoning and therefore misses most relevant attacks. web_cache_poison.sh

uses the wordlist6 of the shortly mentioned param-miner which contains more than 1000

headers. It tests if any value of those headers is re�ected in the body of the HTTP response.

Both scanners have only a bare minimum functionality and have not been maintained since

almost two years.

Nuclei7 is an open source community powered vulnerability scanner. It o�ers the

possibility to use community created templates or create user speci�c templates. There

are two templates available which test for web cache poisoning8,9. However, both test

only for a couple of headers, similar to fockcache. Nuclei is well suited to run many

di�erent templates against one or multiple targets. Nonetheless some web cache poisoning

techniques (like A or B) cannot be transformed into such a template, as the available

functions within templates are quite limited.

Param-miner10 is an open source extension for Burp Suite. It is maintained by James

Kettle, who identi�ed many of the web cache poisoning techniques in Section 2.3 in his

papers and blog posts.. Param-miner's main purpose is to identify headers and parameters

supported by a website. It is also able to �nd many of the in Section 2.3 described web cache

poisoning vulnerabilities. While param-miner is currently the best alternative to WCVS,

its biggest downside is that it is only usable through Burp Suite. For this reason it is not

possible to use it in an automated way, such as starting scans and processing the �ndings.

Furthermore, it may require some e�ort to get used to Burp Suite. For functionalities like

a crawler or rate limiter other add ons need to be used. Besides that, Param-miner does

not support the following techniques: HHO, HMO, HMC, HTTP Request Smuggling and

HTTP Response Splitting.

1https://detectify.com/
2https://appcheck-ng.com/
3https://www.acunetix.com/
4https://github.com/tismayil/fockcache
5https://github.com/fngoo/web_cache_poison
6https://github.com/PortSwigger/param-miner/blob/master/resources/headers
7https://github.com/projectdiscovery/nuclei
8https://blog.melbadry9.xyz/fuzzing/nuclei-cache-poisoning
9https://gitbook.seguranca-informatica.pt/fuzzing-and-web/cache-poisoning-

using-nuclei
10https://github.com/PortSwigger/param-miner

https://detectify.com/
https://appcheck-ng.com/
https://www.acunetix.com/
https://github.com/tismayil/fockcache
https://github.com/fngoo/web_cache_poison
https://github.com/PortSwigger/param-miner/blob/master/resources/headers
https://github.com/projectdiscovery/nuclei
https://blog.melbadry9.xyz/fuzzing/nuclei-cache-poisoning
https://gitbook.seguranca-informatica.pt/fuzzing-and-web/cache-poisoning-using-nuclei
https://gitbook.seguranca-informatica.pt/fuzzing-and-web/cache-poisoning-using-nuclei
https://github.com/PortSwigger/param-miner

22 CHAPTER 3. WEB CACHE VULNERABILITY SCANNER

3.3 Key Features

As there was no completely satisfying web cache poisoning scanner for penetration testers

and bug bounty hunters available yet, as shown in table 3.2, the Web Cache Vulnerability

Scanner (WCVS) was developed. The following key features were in mind:

� Standalone CLI tool: A standalone CLI tool is easy to set up and can easily be exe-

cuted by scripts or other automation frameworks. WCVS is provided as a standalone

binary �le to satisfy these bene�ts.

� Transparency: Transparency is important to gain insight into the scanner's actions

and into its deliverables. The WCVS produces four di�erent outputs. It writes

di�erent kinds of information to the console, such as:

� Program �ow: What is the scanner currently doing? Which techniques is it

executing?

� Errors: Errors get catched and a verbose error message is created.

� Oddities: If any response has oddities they are reported.

� Cache behaviour: The analyzed cache behaviour is reported.

� Vulnerabilities: What vulnerability could be found? Which technique was used?

How was it con�rmed as a vulnerability? Which URL was a�ected?

The same and a few more pieces of information are also written to the log �le. A

JSON report �le is created which contains this information and a little more, such

as which settings were used to start the scanner. Also a list with completed URLs

is created, which can be used to resume a test at a speci�c point by skipping every

URL in this list. Thus, the report, log and list with tested URLs can be further

processed in an automated fashion.

� Crawler: A crawler collects URLs from HTTP responses. This helps to identify and

scan multiple - if not all - URLs of a domain. WCVS is able to collect all URLs from

responses, add them to a queue and scan them before continuing with the regular

URL queue. By default the crawler only adds URLs with the same domain as the

response derives from to the queue. The scanner can be con�gured to also add URLs

from other speci�ed domains. An allowlist with strings, which have to be included

in the URL, can also be provided for example to only add certain �le endings such

as �.css� and �.js�. Furthermore, a limit can be speci�ed how deep the crawler shall

recursively crawl and how many URLs shall be added on each recursivity level.

� Web application �rewall compatibility: When testing a productive system, a web

application �rewall might block an IP address if it is spotting unusual behaviour. An

3.4. PROGRAM FLOW 23

allowed maximum of requests per second can be speci�ed so that WCVS does not

get blocked by web application �rewalls for sending too many requests in a certain

amount of time. The user-agent can also be set to an up-to-date chrome browser in

case that a web application �rewall does not allow uncommon user-agents.

� Ease of use: Security is important for everyone and not only for experts. Thus, it

is also important that a scanner is easy to use and does not scare o� potentially

interested users by requiring complex preliminaries. The more tests for web cache

poisoning are done, the harder it will be for vulnerabilities to remain undetected.

Therefore, WCVS o�ers a default setup that only requires a single command line

�ag. This �ag speci�es a single URL or a �le containing at least one URL. Every

other command line �ag is optional. The default settings of WCVS were chosen in

a way that no or only minimal further con�guration should be needed for most use

cases. Appendix A.1 shows the help output of the scanner which explains all 34

possible command-line �ags.

� Customizability: Customizability ensures that a tool can satisfy individual require-

ments and that it can be optimized for varying conditions. There are a total of 34

command line �ags which give the possibility to tweak the scanner to one's need. For

example, if on the one hand a strict web application �rewall is in place the requests

per second can be limited. On the other hand, the performance, and thereby also

the requests per seconds, can be increased in case that no web application �rewall or

other limiting conditions are present.

� State of the art tests: A scanner should utilize thorough testing techniques in order

to be able to conduct meaningful tests. WCVS supports nine di�erent web cache

poisoning techniques, which are based on current whitepapers and blog posts from

IT security professionals.

3.4 Program Flow

The program �ow can be simpli�ed into 3 nested loops, as illustrated in Figure 3.1.

1. The inner loop from line 5 to line 10 is sending and analyzing HTTP requests in order

to check for web cache poisoning. The loop runs for every variant of a web cache

poisoning technique. Variants are small alterations of a technique. The following

four methods are called sequentially in order to test a variant of a technique.

attackerRequest() is the request which attempts to poison the web cache. It

issues a modi�ed request to the given url and returns speci�c values, such as the

response's body, status code and headers needed later on to check for successful

poisoning indicators. It can take optional parameters to modify the request in order

24 CHAPTER 3. WEB CACHE VULNERABILITY SCANNER

Listing 3.1: Program �ow of WCVS in pseudeocode

1 while URL_Queue not empty {

2 dequeueFirst()

3 analyzeFirst()

4 for each technique {

5 for each variant {

6 attackerRequest()

7 victimRequest()

8 checkPoisoningIndicators()

9 testResponseSplitting()

10 }

11 }

12 crawlAndEnqueueURLs()

13 }

to test for the di�erent web cache poisoning techniques. Most techniques only need

one of the following optional modi�cations:

� change the value of existing headers or add additional headers with values

� change the value of existing cookies or add additional cookies with values

� change the value of existing parameters or add additional parameters with values

� change the value of request's body

� change the HTTP method

victimRequest() is a common request which checks if the prior request got

cached. It uses the same cachebuster as attackerRequest() in order to gen-

erate the same cache key but does not have any further modi�cations. Also, it

returns the same kind of variables as attackerRequest(), which will be analyzed

by checkPoisoningIndicators().

checkPoisoningIndicators() checks if the variant of the corresponding web

cache poisoning technique was successful. The returned values from attackerRequest()

and victimRequest() are checked for the four successful poisoning indicators, de-

scribed in Section 3.7. If the result of any of these checks is true, the reason why

the web cache was found to be vulnerable is saved and written to the console. If a

report shall be generated, this is also written to the report �le. Lastly, the method

returns a boolean which indicates if it was possible to inject content into a header of

the response and is needed for the following step.

testResponseSplitting() tests if HTTP Response Splitting is possible. It is

3.4. PROGRAM FLOW 25

Listing 3.2: Inner loop for HTTP Request Smuggling in pseudeocode

5 for each variant {

6 for x = 0 to 3 {

7 attackerRequest()

8 }

9 }

only executed if the boolean returned by checkPoisoningIndicators() is true,

because injecting content into a header of the response is a precondition for HTTP

Response Splitting. HTTP Response Splitting has the highest impact and therefore

would always increase the impact of the tested variant. All of the web cache poison-

ing techniques are implemented this way, besides HTTP Request Smuggling. The

inner loop of the HTTP Request Smuggling technique is illustrated in Figure 3.2.

The attack variants of this technique try to trigger a timeout in order to con�rm

HTTP Request Smuggling. Further information on how this works is provided in

Section 3.8.

After attackerRequest() with the parameters of the corresponding variant has

�nished executing, checkRequestSmugglingIndicators() is executed. This

method checks whether a timeout occurred. This is repeated three times, to lower

the likelihood of accidental timeouts. If all three requests time out the variant is

considered as most likely successful. Similar to checkPoisoningIndicators()

the �nding with the reason of success is written to the console and - if con�gured -

to the report.

2. The middle for loop is from line 4 to 11 and very simple. Every technique, which

the scanner supports, is executed one after another. By default every technique is

executed, but the scanner can also be con�gured to only execute speci�c techniques.

Because of the inner loop, every variant of a technique is executed, before continuing

with the next technique.

3. The outer loop from line 1 to line 13 ensures that the web cache poisoning tech-

niques are tested for every eligible URL. It is supplied with URLs to be tested by the

URL_Queue. The initial URL_Queue consists of all URLs speci�ed via the -u/-url

command line �ag.

dequeueFirst() takes the topmost URL of the URL_Queue.

analyzeCache() analyzes the caching behaviour of the URL, in particular if a hit

or miss indicator and a cachebuster can be found. More details on hit or miss indi-

cators and cachebusters is given in the following two subchapters. If no cachebuster

can be found, the URL will not be tested, as a cachebuster is a necessary condition

26 CHAPTER 3. WEB CACHE VULNERABILITY SCANNER

to test for web cache poisoning.

Otherwise, the middle loop is run. crawlAndEnqueueURLs() is executed after

all desired techniques are tested. It crawls the source code of the current URL for

additional URLs which are neither in the queue of this loop nor have been already

tested. The newfound URLs are then added to the top of the URL queue. By this

technique all crawled URLs are tested before continuing with the next URL from the

-u/-url command line �ag.

3.5 Hit or Miss Indicatros

Web caches generally add headers to HTTP responses which indicate whether a cached or

uncached response has been sent. Most of those headers contain the value hit if a cached

response and miss if an uncached response has been sent. As a preparation for the planned

tests the responses of a few websites, which will be tested in the following chapter, were

analyzed and the following headers which use hit or miss as an indication were identi�ed:

X-Cache, Cf-Cache-Status, X-Drupal-Cache, X-Varnish-Cache, Akamai-Cache-Status,

X-NC, Server-Timing, X-Hs-Cf-Cache-Status, X-Proxy-Cache. Two other head-

ers which can be used as indicators to determine whether a response was cached or uncached

are the X-Proxy-Cache and Age headers. The header X-Proxy-Cache states how of-

ten the cached resource was requested. A value of 0 indicates that the response has not

been requested before. Therefore, the response was not cached and was issued by the web

server directly. A number greater than 0 indicates that a cached response was served. The

Age header indicates for how long a resource was already cached. If its value is greater

than 0 the response was cached. This indicates a hit. The value 0 indicates a miss.

Web caches can also be con�gured to not add these headers. If that is the case, as

a last e�ort, the time until the response is received can be measured. This allows it to

di�erentiate between cached and uncached responses, because cached responses tend to

be served faster than uncached responses. However, this approach is prone to both false

positives and false negatives. For this reason speci�c statistics are gathered in order to

check the reliability of the time measurement as an indicator. More speci�cs on how WCVS

implements the time measurement is given in the next section. WCVS utilizes all these

mentioned hit or miss indicators to not miss a valid target.

3.6 Cachebusters

A cachebuster is any arbitrary part of a request which in�uences the cache key. Hence,

when a header, parameter or cookie is keyed and used with a random value it should result

in a cache miss. This is important to test for web cache poisoning as the �rst request which

tries to poison the cache has to receive a cache miss. Otherwise the response of another

3.6. CACHEBUSTERS 27

request is returned. At �rst when testing for cachebusters, two identical requests are sent.

If both requests receive a miss the cache seems to be con�gured not to cache and no further

tests will be conducted for this URL. Elsewise, the scanner tests for di�erent cachebusters

in the following order:

1. Query parameters: A query parameter, whose default name is cb, is used with a

random value and appended to the URL.

2. Cookie values: Every cookie value is, one after another, replaced with a random

value.

3. Header values: The values of the following headers are, one after another, appended

or replaced with a random value: Origin, Accept, Accept-Encoding, Cookies.

4. HTTP methods: PURGE and FASTLYPURGE are used separately as HTTP method.

Both HTTP methods are used to clear the cache and therefore force a cache miss for

the request

If a hit or miss indicator was found in the previous step the tests are simple. However,

the tests for the fourth kind of cachebusters di�ers a bit from the �rst three kinds. In the

following the tests for query parameters, cookie values and header values are illustrated.

Lastly, the di�erences of the tests for HTTP methods are described. For each of the

cachebusters two requests are sent with di�erent random values. If both requests receive a

miss the cachebuster is regarded as suitable and will be used for the tests. In case that a

hit is received the cachebuster is viewed as ine�ective, as the likelihood of not having an

unique cache key, when using a 12 character long random value as cachebuster, is minimal.

If no hit or miss indicator could be found in the previous step, the timed approach

will be used. For every potential cachebuster 10 requests are sent. The requests 1,3,5,7,9

generate a new random value for the cachebuster, while the requests 2,4,6,8,10 use the same

value as the previous request. If a cachebuster is working, every odd-numbered request

should be a miss and every even-numbered request a hit. The time for each response

is measured. If every odd-numbered request is faster than the following even-numbered

request, it can be assumed that the cachebuster is working. This method is not as reliable

as the other hit or miss indicators because the time could be in�uenced by various factors

other than if the response was cached or not. Therefore, 10 requests are made to increase

the signi�cance of the time measurements. In addition, a default threshold was set. Only

if the odd-numbered responses were at least 30ms faster than the even-numbered ones the

time measurements were used as a valid hit or miss indicator. This threshold appeared as

appropriate during test runs.

Afterwards the fourth cachebuster method is tested. The process is similar to the other

three cachebuster methods. Instead of a random value, the HTTP method is set to PURGE

28 CHAPTER 3. WEB CACHE VULNERABILITY SCANNER

and instead of using the same value the HTTP method is resetted to its initial value. The

same process is repeated with FASTLYPURGE.

3.7 Successful Poisoning Indicators

WCVS uses four di�erent indicators for successful web cache poisoning attacks.

1. Re�ection in the body: The poison value included in the HTTP request is re�ected

in the body of the HTTP response. This could lead to, among other consequences,

stored XSS or defacement of the website.

2. Re�ection in a header: The poison value included in the HTTP request is re�ected

in a HTTP response header. This could be for instance the cookie header, possibly

leading to session �xation, or the Location header leading to an open redirect.

3. Status code: The status codes of the attacker and victim responses are not identical

to the initial response. For instance, the initial status code is 200 OK, but for the

attacker and victim responses the status code is 302 Found thus indicating an open

redirect.

4. Content-Length di�erence: The value of the Content-Length header of the at-

tacker and victim responses are not identical to the respective value of the initial

response. For example, the request shall contain the User-Agent header of an

outdated Internet Explorer browser. The target site might send a 200 OK response,

similar to the initial response. However, its content is not the expected website,

but a noti�cation that the browser is not supported and shall be updated. The

poison value is not re�ected in the header or the body and the status code is the

same. However, the Content-Length is di�erent, as the initial response has the

Content-Length of the expected webpage and the attacker and victim responses

have the Content-Length of the �Update your browser�-webpage. This would be

considered a DOS attack as other users trying to access the same page would receive

the same noti�cation page.

For all four poisoning indicators false positives are possible. While false positives are

improbable for the �rst and second indicator, the third and fourth indicators are more

prone to false positives.

1. Re�ection in the body: WCVS uses random 12 digit numbers as poison value. While

it is unlikely that this random number was already present in the response's body it

is not impossible.

2. Re�ection in the header: Just like the �rst indicator the reliability of this indicator

depends on the uniqueness of the randomly generated poison value.

3.8. IMPLEMENTATION OF WEB CACHE POISONING TECHNIQUES 29

3. Status code: The status code could also di�er, when an error, such as a time out

occurs, for example. This may happen in case a gateway, proxy or web server is

temporarily overloaded.

4. Content-Length di�erence: The Content-Length can be di�erent for multiple

reasons, for example when a �le is updated. While it is important that the threshold

for the Content-Length di�erence is not set too low as this might increase the

amount of false positives, it is also important that the threshold is not set too high as

the scanner might miss a web cache poisoning vulnerability. The Content-Length

indicator is disabled as default, because of its unreliability. However, a command-line

�ag can be used to specify a threshold for the Content-Length di�erence. The

optimal threshold depends on the tested website.

3.8 Implementation of Web Cache Poisoning Techniques

Given that the development of WCVS was started a few months prior to this thesis, tech-

niques 1 to 4 - namely unkeyed header poisoning, unkeyed parameter poisoning, parameter

cloaking and fat GET - were already implemented. During this thesis the techniques 5

to 9 - namely HTTP request smuggling, HTTP response splitting, HTTP header oversize,

HTTP meta character and HTTP method override - were developed to further complete

the list of web cache poisoning techniques WCVS covers.

1. Unkeyed Header Poisoning For unkeyed header poisoning all cookies which are

set by the website are tested at �rst. Every cookie represents a variant. For each variant

the corresponding cookie value will be changed to a di�erent random poison value. Then, a

few headers are tested with preset values. For example, to test if the port can be changed

to achieve a DOS �:31337� is appended to the Host header and in another request the

�X-Forwarded-Port: 31337� header is added. Each of these examples represents a variant

of header poisoning. Afterwards, a wordlist with header names is used. Each header

name of this wordlist represents a variant. The only parameter which is handed over to

the �rstRequest() method is the header name of the corresponding variant and a random

poison value. If the default request already contained a header with this name, such as

Origin, its value is overwritten. Otherwise a new header with the passed name and value

is added.

2. Unkeyed Parameter Poisoning Similar to the last part of unkeyed header poi-

soning a wordlist with parameter names is used. Every parameter name which can be

extracted from the given URL and every parameter name from the wordlist represents a

variant. If the parameter name of the variant is already present in the URL its value is

overwritten with a random poison value. Otherwise a new parameter with the parameter

30 CHAPTER 3. WEB CACHE VULNERABILITY SCANNER

name and a random poison value is appended. Parameters which alter the response but

are keyed, cannot be utilized for this technique. However, they can be useful for the fat

GET and parameter cloaking techniques, where the fact that the parameter is keyed can

be circumvented by exploiting an unharmonized con�guration of the web cache and web

server. Therefore, those parameters will be added to a list which can be utilized for the

fat GET or parameter cloaking techniques.

3. Parameter Cloaking Parameter cloaking uses the parameter list which was created

by the unkeyed parameter poisoning technique, as well as a short list of well-known pa-

rameters. At �rst, it will test if any of the following well-known parameters are unkeyed:

utm_source, utm_medium, utm_campaign, utm_content and utm_term. This is

often the case for marketing and tracking purposes. If none of them is unkeyed the test for

parameter cloaking is terminated. Afterwards, each parameter of the �rst mentioned list

is tested one after another. The current parameter and a poison value is appended with

a ; to every of the unkeyed utm parameters. Thus, creating for example a query string like

?keyed_parameter=foo&utm_parameter;keyed_parameter=poison_value. Each

of the created query parameters represent a variant of this technique.

4. Fat GET Just like parameter cloaking, the list which was created during the unkeyed

parameter poisoning technique is used. Three di�erent variants of fat GET are evaluated

with every parameter of this list:

1. A GET request with the current parameter and a random poison value in the body.

2. Three GET requests with the current parameter and a random poison value in the

body and each with one of the following three headers set: X-HTTP-Method-Override:

POST,X-HTTP-Method: POST and X-Method-Override: POST.

3. A POST request with the current parameter and a random poison value in the body.

5. HTTP Request Smuggling Four di�erent HTTP request smuggling variants are

used which were described in the paper HTTP Desync Attacks: Request Smuggling

Reborn [25]. While other variants require two requests to be sent and that no other re-

quests were received between them, those four variants only require one request and are

therefore more reliable. The goal is to provoke a timeout by making the web cache not

forward the complete request while the web server is waiting for the remaining part of

the request. Listing 3.3 illustrates one of these variants. When the web cache utilizes

the Transfer-Encoding header, while the web server utilizes the Content-Length

header a timeout will arise. The web cache will only forward the blue part of the request as

the 0 indicates that the body contains no further content and that the request is �nished

3.8. IMPLEMENTATION OF WEB CACHE POISONING TECHNIQUES 31

Listing 3.3: HTTP Request Smuggling variant

1 POST /about HTTP/1.1[CRLF]

2 Host: example.com[CRLF]

3 Transfer-Encoding: chunked[CRLF]

4 Content-Length: 6[CRLF]

5 [CRLF]

6 0[CRLF]

7 [CRLF]

8 X

at this point. The web server on the other hand waits for a body with a length of 6 while

the web cache only forwarded a body with the length of 1. The result is either a timeout,

if the web server keeps waiting, or an error response, such as 500 Internal Server

Error, if the web server stops waiting. Both indicate that the combination of web cache

and web server is vulnerable to HTTP request smuggling. If no further servers than the

web cache proxy server and the web server are involved it is su�cient to only send the blue

part of the request. However, if another server is located before the web cache and passes

through the request to the web cache it is important that the blue part of the request

is also present. If the server in front of the web cache obeys RFC 2616 [22, Section 4.4]

and therefore utilizes the Content-Length header instead of the Transfer-Encoding

header, a timeout would occur if the blue part of the request is missing. This would then

result in a false positive since a timeout is considered as success for this technique variant.

6. HTTP Response Splitting The precondition of HTTP response splitting is that

a part of the request is re�ected unencoded in a header of the response. If any of the

techniques of WCVS results in the poison value being re�ected in a header of the re-

sponse, another similar request with a di�erent cachebuster value is issued. This time

\r\nWeb_Cache: Vulnerability_Scanner is appended to the poison value. If the

backslashes are not encoded by the web server, the resulting response will contain the

new header Web_Cache: Vulnerability_Scanner. In that case the HTTP response

splitting attack was successful.

7. HTTP Header Oversize (HHO) HHO has three variants, each testing for a dif-

ferent size limit by adding multiple headers with a size of 80 bytes each. The di�erent

variants add headers with a size of in total 4000, 8000 and 16000 bytes to the request.

32 CHAPTER 3. WEB CACHE VULNERABILITY SCANNER

The di�erent values for the total size are selected by the header size limit of common web

servers, such as Apache11 and NGINX12.

8. HTTP Meta Character (HMC) HMC has 10 variants where each adds one of the

following meta characters to a header: \n, \r, \a, \0, \b, \e, \v, \f, \u0000. These

characters are forbidden in HTTP headers according to RFC 7230 [19, Appendix A.2] as

already mentioned in Section 2.3.3.8.

9. HTTP Method Override (HMO) HMO has a total of 12 variants. The three

headers X-HTTP-Method-Override, X-HTTP-Method and X-Method-Override are

each combined with the four di�erent methods GET, POST, DELETE and NONSENSE.

3.9 Setup and Usage

WCVS can be executed without installation as it was developed in Go. Standalone binaries

for windows/amd64, linux/amd64 and darwin/amd64 can be downloaded from the releases

page13 of the github repository. The release page also provides a header and a parameter

wordlist, which are recommended as suitable default values unless scenario speci�c wordlists

are needed. A header wordlist is required for the technique �unkeyed header poisoning�.

A parameter wordlist is required for the techniques �unkeyed parameter poisoning�, �fat

GET� and �parameter cloaking�.

Building from Sourcecode It is possible to build a binary for other operating systems

by using a Go installation. The source code of the web cache vulnerability scanner can be

downloaded from Github14, as it is open source under Apache 2.0. Using the command �go

build web-cache-vulnerability-scanner.go� a binary for the current operating system will

be built. It is also possible to build binaries for other operating systems15 by setting the

GOOS and GOARCH environment variables.

Execution The user executing the binary needs three permissions. The �rst permission

is to execute the binary, the second to read the �les which the scanner may need, such as

the two wordlists, and the third to write to the directory the scanner writes output to -

which is the directory the scanner was started from as default. The scanner can be invoked

11https://httpd.apache.org/docs/current/mod/core.html#limitrequestfieldsize
12https://nginx.org/en/docs/http/ngx_http_core_module.html#large_client_

header_buffers
13https://github.com/Hackmanit/Web-Cache-Vulnerability-Scanner/releases
14https://github.com/Hackmanit/Web-Cache-Vulnerability-Scanner/archive/refs/

heads/master.zip
15https://www.digitalocean.com/community/tutorials/building-go-applications-

for-different-operating-systems-and-architectures

https://httpd.apache.org/docs/current/mod/core.html#limitrequestfieldsize
https://nginx.org/en/docs/http/ngx_http_core_module.html#large_client_header_buffers
https://nginx.org/en/docs/http/ngx_http_core_module.html#large_client_header_buffers
https://github.com/Hackmanit/Web-Cache-Vulnerability-Scanner/releases
https://github.com/Hackmanit/Web-Cache-Vulnerability-Scanner/archive/refs/heads/master.zip
https://github.com/Hackmanit/Web-Cache-Vulnerability-Scanner/archive/refs/heads/master.zip
https://www.digitalocean.com/community/tutorials/building-go-applications-for-different-operating-systems-and-architectures
https://www.digitalocean.com/community/tutorials/building-go-applications-for-different-operating-systems-and-architectures

3.9. SETUP AND USAGE 33

by command-line. The only command-line �ag which is required is the -url (short: -u) �ag.

This �ag indicates which URLs shall be tested. Its value can either be a single URL or

a �le with multiple URLs. There are 33 other command-line �ags which are all optional

and can be used to customize and tweak the scanner. Appendix 1 shows the help output

of the scanner which explains all 34 possible command-line �ags. The 11 command-line

�ags which were used during the test and will be referred to in the following chapter �Test

Approach� are the following:

1. url (short: u) [string] As already mentioned, this �ag is the only mandatory one. It

takes a string as value. This string can either be a single URL or the path to a �le

which contains multiple URLs. In case that a path to a �le is used, the string ��le:�

has to be added as a pre�x. For example: ��le: C:/path/to/urls.txt�.

2. generatecompleted (short: gc) A �le, which contains every URL for which testing

has been completed. The �le is updated each time a new URL has been tested. The

�le can be used to continue a test at the same point in case the scanner crashed or

had to be terminated for whatever reason.

3. generatereport (short: gr) A report will be generated and updated after a URL

was completely tested. The report is in JSON format and contains - among other

things - the following information:

� Which settings were used

� Which errors occurred

� Which vulnerabilities were found including the request, the response and the

reason why it was �agged as vulnerability

4. generatepath (short: gp) [string] This path will be used to write all �les to. This

takes a string which should represent a valid directory path, for example �C:/path/to/directory�.

A log �le is always created and contains more verbose information than the console

output. The report and completed-URL �le will also be written to this path, if their

�ag was used.

5. recursivity (short: r) [integer] This �ag de�nes how deep the crawler shall crawl

recursively. It takes an integer as value. A value of �0� means that the URLs should

not be crawled.

6. reclimit (short: rl) [integer] This �ag limits how many URLs shall be added by the

crawler for each recursivity depth. It takes an integer as value. A value of �0� means

that there is no limit.

34 CHAPTER 3. WEB CACHE VULNERABILITY SCANNER

7. headerwordlist (short: hw) [string] This �ag de�nes the path to the header wordlist

which will be used for the �unkeyed header poisoning� technique. It takes a string

with a valid path to a �le, such as �C:/path/to/wordlist.txt�.

8. parameterwordlist (short: pw) [string] This �ag de�nes the path to the parame-

ter wordlist which will be used for the �unkeyed parameter poisoning�, �Fat GET�

and �parameter cloaking� techniques. It takes a string with a valid path to a �le,

such as �C:/path/to/wordlist.txt�.

9. useragentchrome (short: uac) The default user-agent of WCVS is "WebCacheVul-

nerabilityScanner v" followed by the version number. Some web applications �rewalls

may block requests which do not use a browser as the user-agent. Therefore, this

�ag changes the user-agent to the user-agent of a Google Chrome browser.

10. reqrate (short: rr) [�oat] This �ag limits the maximum allowed amount of re-

quests per second. It takes a �oat as value. For example, a value of �1� would

mean that no more than one request will be sent every second, while a value of �0.5�

would mean that no more than one request will be sent per every two seconds. While

some bug bounty programs require to throttle the amount of requests per second,

the throttling is also important to not get blocked by some web application �rewalls

or to not overload a busy or weak server.

11. contentlengthdi�erence (short: cldi�) [int] This �ag enables the scanner to use

the content-length di�erences as successful web cache poisoning indicators. As this

indicator is the one most prone to false positives, it is disabled by default. The �ag

takes an integer as value. A value of �0� means that the content-length di�erence

shall be ignored, while an integer greater than �0� de�nes the threshold for how many

bytes the content-length may di�er.

Chapter 4

Testing for Web Cache Poisoning

This chapter deals with the conducted tests for web cache poisoning. First, the selection

of eligible websites is described. Second, the approach of the tests using the Web Cache

Vulnerability Scanner is explained. Afterwards, the results of the tests are presented. That

includes - among others - the identi�ed hit or miss indicators, cachebusters, web cache

poisoning vulnerabilities and false positives. Lastly, two countermeasures which reduce

the number of false positives are described.

4.1 Selection of Websites

As it can be legally troublesome to test foreign sites for vulnerabilities only websites with a

bug bounty program were chosen. The procedure for this selection was the following. Bug

bounty platforms were used to collect websites that allow it to be tested for vulnerabilities.

These platforms have a large collection of testable websites and provide legal safety. In

particular Hackerone1, Bugcrowd2, Intigriti3 and YesWeHack4 were used as they are the

most popular bug bounty platforms based in Europe or the USA. OpenBugBounty5 -

another popular bug bounty platform - was not used because they prohibit the use of

automated scanners entirely. Using the four platforms mentioned before more than 1000

suitable websites were collected.

Afterwards, the Tranco list6 (generated on 01 June 2021) was used to sort the websites

depending on their rank on the tranco list. The Tranco list is a ranking of the most popular

websites which applies speci�c countermeasures against manipulation [26]. The selection of

the websites was then shrinked, as it was not possible to read through over 1000 bug bounty

programmes, each containing a minimum of 4 pages, in the limited time of this thesis. Only

1https://www.hackerone.com/
2https://www.bugcrowd.com/
3https://www.intigriti.com/
4https://www.yeswehack.com/
5https://www.openbugbounty.org/
6https://tranco-list.eu/list/QXW4

35

https://www.hackerone.com/
https://www.bugcrowd.com/
https://www.intigriti.com/
https://www.yeswehack.com/
https://www.openbugbounty.org/
https://tranco-list.eu/list/QXW4

36 CHAPTER 4. TESTING FOR WEB CACHE POISONING

websites within the top 1000 of the Tranco list were considered for further inspection. The

Figure 4.1: Bug bounty program rules regarding the use of automated scanners

bug bounty programs of the remaining 69 websites contained di�erent regulations regarding

the use of automated scanners. Listing 4.1 illustrates these di�erences. While 34 bug

bounty programs allowed the use of automated scanners, 16 strictly disallowed their use.

17 bug bounty programs contained limitations or requirements for automated scanners.

Some of those were:

� The User-Agent header has to include a speci�c string.

� A speci�c header has to be set.

� Only a certain amount of requests per second is allowed, e. g., one request per second.

� Commercial scanners are disallowed, while noncommercial scanners are allowed.

WCVS has options to set custom headers and to throttle the requests per second. Also

it is not a commercial scanner. Therefore, all these requirements can be ful�lled. The

two remaining bug bounty programs required to contact their customer service before

conducting any tests. Both customer services were contacted, but no response was received

within two months prior to the beginning of the tests. Therefore, those two domains were

excluded from the tests. In the end 51 domains were found eligible for the tests. While

11 bug bounty programs listed all subdomains of the website which are allowed to be

tested, the other 42 allowed the testing of any subdomain one can �nd. For these 42 bug

bounty programs, the open-source tool sub�nder was used to generate a list of subdomains

of the website. Sub�nder gathers subdomains for a given domain by utilizing multiple

4.2. TEST APPROACH 37

Figure 4.2: Amount of discovered subdomains per subdomain

search engines and data of services which collect subdomains of websites. Listing 4.2

illustrates the amount of found subdomains split amongst the ten websites with the most

subdomains and the rest. In total 300468 subdomains were found and around 92,5% belong

to the ten websites with the most subdomains. As sub�nder uses passive methods to gather

subdomains, the data gathered from search engines and other databases might be outdated

and some of these subdomains are no longer available.

4.2 Test Approach

For each of the 51 websites a folder was created which contains a �le called �domains�

with a list of all given or passively found subdomains. Then a script was used to start an

instance of WCVS for each list of subdomains. The following 11 �ags were used for all

scanners:

1. url �le:C:/path/to/domain/subdomains.txt This is the path to the �le which

contains all the found subdomains of the corresponding domain.

38 CHAPTER 4. TESTING FOR WEB CACHE POISONING

2. generatecompleted This was done as a precaution to be able to continue a scan, if

a scanner would crash or be terminated for whatever reason.

3. generatereport The report is important for the analysis as it contains all �ndings,

errors and anomalies, which occurred during the scans.

4. generatepath C:/path/to/domain/ The list with completed URLs, the report and

the log �le shall be written to this path.

5. recursivity 5 The crawler was set to a recursivity depth of 5 in order to test multiple

web pages of a subdomain, if they are linked in the response.

6. reclimit 5 A maximum of 5 URLs will be crawled for each depth. This combined with

the recursivity depth of 5 results in a maximum of 25 additional URLs which will be

tested for each subdomain.

7. headerwordlist C:/path/wordlists/headers The used wordlist contains 1118 head-

ers and is a puri�ed version of the param-miner header wordlist7 as duplicates were

removed.

8. parameterwordlist C:/path/wordlists/parameters The used wordlist contains 6453

parameters and is a puri�ed version of the param-miner parameter wordlist8 as du-

plicates were removed

9. useragentchrome The user-agent was set to an up-to-date Google Chrome browser

in order to have less problems with web application �rewalls, as they might block

unusual user-agents.

10. reqrate 1 The scanner was throttled to send no more than one request per second.

This was done because some bug bounty programs required this limitation and also

because �rst tests showed that the web application �rewalls of programs without

limitations were blocking the IP address if too many requests per second were sent.

Hence the limit was set to such a low amount.

11. contentlengthdi�erence 2000 A deviation of the content-length on the one hand

may indicate that the used web cache poisoning technique triggered a di�erent re-

sponse. On the other hand it may just be an intended or random change of the

content-length. As this technique is highly vulnerable to false positives a content-

length di�erence of 2000 bytes was chosen.

Five bug bounty programs required the use of a speci�c header in order to identify the tra�c

generated by bug bounty hunters. Thus, �ve scanners were started with an additional �ag,

7https://github.com/PortSwigger/param-miner/blob/master/resources/headers
8https://github.com/PortSwigger/param-miner/blob/master/resources/params

https://github.com/PortSwigger/param-miner/blob/master/resources/headers
https://github.com/PortSwigger/param-miner/blob/master/resources/params

4.3. STATISTICS 39

speci�cally the "setheader" �ag, to set this speci�ed header.

To sum up, an instance of WCVS was started for each website. The scanners scanned

every subdomain for the website sequentially. The version 0.4.369 of WCVS was used for

these tests.

Figure 4.3: Amount of subdomains and URLs with no connection or an error during the cache

analysis

4.3 Statistics

The scans ran for almost 12 days. Within this time frame 35 of the 51 scanners had

�nished testing every subdomain of the website in question. The remaining scanners were

stopped, as enough data was collected. Overall, 61650 of the 300468 subdomains were

scanned completely. Listing 4.3 illustrates selected statistics for those tested subdomains.

To almost half of these subdomains no connection could be established. This is most

likely due to the passive collection approach, as the passively collected subdomains may

be out of date and non-existent anymore. During the cache analysis of 76 subdomains

an error occurred wherefore these subdomains were skipped. 41857 additional URLs were

crawled from the eligible subdomains. A total of 73620 URLs, consisting of the reachable

subdomains and their crawled URLs, were completed by WCVS. For 50626 URLs a hit or

miss indicator could be found. 114 of these were either not reachable or an error occurred

during the cache analysis. To sum up, a total of 73620 URLs were tested. Listing 4.4

shows the identi�ed hit or miss indicators. While in about 31% of the cases no hit or

9https://doi.org/10.5281/zenodo.5539478

https://doi.org/10.5281/zenodo.5539478

40 CHAPTER 4. TESTING FOR WEB CACHE POISONING

Figure 4.4: Amount of identi�ed hit or miss indicators

miss indicator could be found, in almost 64% the CF-Cache-Status header was found to

be a valid hit or miss indicator. This header is created by the Cloud�are CDN, indicating

that most of the tested URLs use Cloud�are services for caching. If no explicit hit or miss

indicator is found, WCVS measures the time in order to check if a cachebuster exists. This

was successful in 438 cases.

During the tests a bug in the version 0.4.3610 of the WCVS resulted in �awed cache-

buster statistics. Around 10% of the con�rmed cachebusters were in fact not eligible.

Therefore a second test run was conducted using the version 0.4.3911 which �xed the

statistics bug. This time only the caches were analyzed and no web cache poisoning tech-

niques were executed. Listing 4.5 illustrates the identi�ed cachebusters of the second test

with the correct statistics. Out of the 50445 URLs with a found hit or miss indicator,

49149 web caches were con�gured to not cache the content of the URL. This could be

veri�ed by sending two equal requests and receiving a cache miss both times. Only for 946

URLs a cachebuster could be identi�ed. Most of the time the query parameter with the

name cb was successful. The second most successful cachebuster was the Origin header;

the PURGE and FASTLYPURGE HTTP methods were the third and fourth most successful

cachebusters. For safety reasons PURGE and FASTLYPURGE should not be usable by users.

These two HTTP methods force the web cache to clear every cached response of a URL.

This makes it easy for an attacker to store a malicious response, if they found a way to

10https://doi.org/10.5281/zenodo.5539478
11https://doi.org/10.5281/zenodo.5540751

https://doi.org/10.5281/zenodo.5539478
https://doi.org/10.5281/zenodo.5540751

4.4. FOUND WEB CACHE POISONING VULNERABILITIES 41

Figure 4.5: Amount of identi�ed cachebusters

create oneThey can clear the cache for the a�ected URL and send the malicious request

immediately afterwards to ensure it is cached.

4.4 Found Web Cache Poisoning Vulnerabilities

Four subdomains were found to be vulnerable to web cache poisoning. In all four cases

there is unkeyed input which has an impact on the response. This is dangerous as an

attacker can manipulate the response without a�ecting the cache key. However, during

the limited time of this thesis no possibility was found to generate a malicious response

using the unkeyed input. In the following the requests and responses which revealed the

web cache poisoning vulnerabilities are explained. The �rst �nding enabled it to change the

value of the Access-Control-Allow-Headers header, while the other three enabled

it to in�uence the response's body at certain locations. All four �ndings were achieved

with the technique �unkeyed header poisoning� and a total of 11 of the tested URLs were

a�ected. The vulnerabilities were reported to the corresponding bug bounty programs.

For these reports a web cache poisoning report template was created. The template can

be found in Appendix A.2.

1. Finding The �rst �nding allows it to change the value of the Access-Control-Allow-Headers

header of the response. The a�ected URL is a permanent redirection to the new location

of a speci�c �le. Such a request is illustrated in Listing 4.1 and the corresponding response

in Listing 4.2. The two modi�cations WCVS made to the request can be seen in the �rst

42 CHAPTER 4. TESTING FOR WEB CACHE POISONING

Listing 4.1: Shortened request of the �rst �nding

1 GET /scripts/optimizely.js?cb=548676702587 HTTP/2

2 Host: [Redacted]

3 Access-Control-Request-Headers: 492320315892

Listing 4.2: Shortened response of the �rst �nding

1 HTTP/2 301 Moved Permanently

2 Date: Mon, 06 Sep 2021 13:30:33 GMT

3 Location: https://cdn.optimizely.com/js/[Redacted].js?cb=54867

6702587

4 Access-Control-Allow-Origin: *

5 Cf-Cache-Status: MISS

6 Access-Control-Allow-Headers: 492320315892

7 Access-Control-Allow-Headers: *

8 Access-Control-Allow-Methods: GET, HEAD

9 Access-Control-Expose-Headers: x-amz-meta-revision

10 Access-Control-Max-Age: 86400

listing. First, WCVS added the cb query parameter with a randomly generated 12 digit

value as cachebuster. Second, WCVS added the Access-Control-Request-Headers

header with another randomly generated 12 digits as poison value. The Access-Control-Allow-Headers

value and the query string are highlighted in both listings, as they are both re�ected in

a header of the response. The query string is keyed and therefore was not applicable to

unkeyed header poisoning. Also parameter cloaking and fat GET were not successful, be-

cause the query string was copied and appended to the value of the location header without

any interpretation. Furthermore, the query string did not seem to have any impact on the

response of the redirected URL. The Access-Control-Allow-Headers header is used

both for HTTP requests and HTTP responses. It is usually used in pre�ight requests to

�nd out which headers are allowed for requests and in responses to these pre�ight requests

to show the allowed headers12. The Access-Control-Allow-Headers: * header in

line 7 of the second listing, indicates that already every header is allowed. RFC 2616 [22,

Section 4.2] de�nes that the values of headers with the same name are merged together.

Therefore, it should not have any impact on the behavior of the browser if there are multi-

ple Access-Control-Allow-Headers headers as long as one has a wildcard as value

and if RFC 2616 is implemented correctly. Meta characters in both the query string and

12https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-

Allow-Headers

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Headers

4.4. FOUND WEB CACHE POISONING VULNERABILITIES 43

Listing 4.3: Shortened request of the second �nding

1 GET /page/2?cb=634598798798 HTTP/2

2 Host: [Redacted]

3 Referer: 477242609399

Listing 4.4: Shortened response of the second �nding (part 1)

1 <script type="text/javascript" nonce="[...]">

2 !function(s){

3 s.src=’https://px.srvcs.tumblr.com/impixu?T=[...]&J=[...]&

U=[...]&K=[...]&R=477242609399’.replace(/&R=[^&$]*/,’’).

concat(’&R=’+escape(document.referrer)).slice(0,2000).

replace(/%.?.?$/,’’);

4 }(new Image());

5 </script>

Listing 4.5: Shortened response of the second �nding (part 2)

1 <noscript>

2 <img style="[...]" src="https://px.srvcs.tumblr.com/impixu?

T=[...]&J=[...]=&U=[...]&K=[...]&R=477242609399">

3 </noscript>

the value of the Access-Control-Allow-Headers header were sanitized so that they

were not interpreted by the web server. Thus, HTTP response splitting was not possible.

2. Finding The second �nding allows it to add a string to the response's body at four

certain places. Listing 4.3 illustrates a request which utilizes this behavior. Again, the

query parameter cb was used as cachebuster. The header Referer was given a random

poison value. Listing 4.4 shows the �rst part of the response where the poison value is

re�ected. Javascript is used to generate an image. The source of the image is set to an

external URL with many query parameters. The last parameter called R contains the value

of the Referer header. If the script is executed it does four changes to the URL, before

creating the image. First, it removes the R parameter and its value; thereby removing

the poison value. Second, it takes the document.referrer property, URL encodes it

and uses this as the value of a new R query parameter which is appended to the URL.

Third, if the URL is longer than 2000 characters, everything after the 2000th character is

removed. Fourth, it removes the last three characters if they represent any URL encoded

44 CHAPTER 4. TESTING FOR WEB CACHE POISONING

Listing 4.6: Shortened request of the third �nding

1 GET /?cb=553972046741 HTTP/2

2 Host: [Redacted]

3 Referer: 387921069845

Listing 4.7: Shortened request of the fourth �nding

1 GET /?cb=121337194684 HTTP/1.1

2 Host: [Redacted]

3 User-Agent: 499136016762

character. The document.referrer property is read during runtime and therefore does

not get in�uenced by caching. The poison value is URL encoded before it is added to the

URL. Hence, it is not possible to break out of the string or to append additional query

parameters to the URL. Listing 4.5 shows the second part of the response where the poison

value is re�ected. If Javascript is disabled an image is created with the same URL as the

one in Listing 4.4. However, this time the URL is not modi�ed by Javascript and thus the

poison value is not removed. The poison value gets URL encoded before it is added to the

URL. Hence, it is again not possible to break out of the string or to append additional

query parameters to the URL. The third part of the response where the poison value is

re�ected is similar to the �rst part. Only some values of the other query parameters of the

URL are di�erent. This, however, does not make any di�erence for the behavior. In the

same manner the fourth part is similar to the second part.

These four HTML code snippets seem to be common snippets for websites generated

with Tumblr13. Internet searches with these snippets reveal a huge amount of other Tumblr

websites with identical snippets.

3. Finding The third �nding is similar to the second one. Once again a website gener-

ated by Tumblr allows it to add the value of the Referer header to the URL of the four

image sources. The header is again unkeyed and the value gets URL encoded before the

insertion. A total of �ve web pages of this subdomain were found to be a�ected by this

behavior.

4. Finding The fourth �nding allows it to add a string to the response's body at one

place. Listing 4.7 illustrates a request which utilizes this behavior. Similarly to the other

�ndings, the cb query parameter is used as cachebuster. The poison value was inserted

as the value of the User-Agent header. Listing 4.8 shows a part of the corresponding

13Tumblr is a service to create microblogs (https://www.tumblr.com/)

https://www.tumblr.com/

4.5. FALSE POSITIVES 45

Listing 4.8: Shortened response of the fourth �nding

1 <div id="client_ua" style="display:none">

2 499136016762

3 </div>

response. The poison value is re�ected inside of a div element. As the style attribute of

the div element is set to display:none the div element including its content is invisible.

Thus, the poison value is only visible in the page source. Any string which gets injected by

the User-Agent header gets HTML-encoded which prevents XSS attacks and injection

of HTML code in general. A total of four web pages of this subdomain were found to be

a�ected by this behavior.

Figure 4.6: Amount of false positives

4.5 False Positives

While WCVS reported a total of 85577 potential vulnerabilities, only 11 could be con�rmed

as correct. The remaining reports seem to be false positives. Due to the huge amount of

reports only samples could be checked for correctness. These samples were chosen wisely in

order to suggest the same result for other �ndings with similar characteristics. All �ndings

46 CHAPTER 4. TESTING FOR WEB CACHE POISONING

were grouped by their successful poisoning indicator, which were introduced in Section

3.7, or if the used technique was HTTP request smuggling. Because the two successful

poisoning indicators for HTTP request smuggling, timeout and 501 error code, di�er from

the successful poisoning indicators of the other techniques, HTTP request smuggling was

grouped separately from the other techniques. Listing 4.6 illustrates the distribution of

the amount of the �ndings on each group of the �ve groups. It can be clearly seen that the

status code and content-length successful poisoning indicators issued almost every

false positive. WCVS tested about 8600 variants for each URL which has a cachebuster,

whereas 8500 variants arose because of the length of both used wordlists. To test 8600

variants with a rate limit of one request per second takes about �ve hours. If the status

code or content-length of a web page is changed a few minutes or hours into the test,

the remaining variants will each report that they were successful. Hence, leading to such

a high amount of false positives. A more thorough breakdown of the �ve false positives

groups is given in the following.

Re�ection in Header Only for one �nding the successful poisoning indicator was that

its poison value was re�ected in the header. This one is the �rst found web cache poisoning

vulnerability. Thus, this successful poisoning indicator did not lead to any false positives.

Re�ection in Body A total of 11 �ndings have been identi�ed with the successful

poisoning indicator that the poison value was re�ected in the body. Ten of them were

identi�ed as correct, while one was identi�ed as false positive. This false positive occured,

because the X-Forwarded-Port header was tested with the prede�ned poison value

31337. This was done because a random 12 digit value, which is normally used for poison

values, is not a valid port number. However, this prede�ned port value is not that unique

and the target website contained an URL with 31337 in it.

Request Smuggling 184 �ndings were identi�ed with the HTTP Request Smuggling

technique. These �ndings were checked manually and also with the Burp Suite extension

�HTTP Request Smuggler�14. This extension was developed by the already mentioned

security researcher James Kettle and has the ability to detect and exploit HTTP Request

Smuggling. The HTTP Request Smuggling �ndings can be split into two di�erent suc-

cessful poisoning indicators. For 51 the successful poisoning indicator was that the status

code changed to 500. However, HTTP Request Smuggling could not be con�rmed. Hence,

those �ndings are categorized as false positives. For the other 133 the successful poisoning

indicator was that three consequent requests all resulted in a timeout when testing for

HTTP Request Smuggling. However, it was not possible to exploit this behavior. Fur-

thermore, while the time out variant is said to generate only a few false positives, this is

14https://github.com/portswigger/http-request-smuggler

https://github.com/portswigger/http-request-smuggler

4.5. FALSE POSITIVES 47

not completely certain and needs to be con�rmed [25]. The �HTTP Request Smuggler�

also reported the �ndings as most likely vulnerable to HTTP Request Smuggling due to

the timeouts. Nonetheless, it also could not exploit the vulnerabilities or con�rm them

with certainty. As the possibility that these �ndings are false positives could not be erased

completely, they were all categorized as false positives.

Status Code 12944 �ndings were reported with the successful poisoning indicator that

the status code changed. The amount of false positives for this successful poisoning in-

dicator is so high, because the status code of websites changed independently of the web

cache poisoning technique used. There were four status code changes in particular which

triggered the false positives.

1. 503 Service Unavailable The web server was currently not available.

2. 504 Gateway Timeout The web cache or another proxy server did not receive a

response from the web server.

3. 403 Forbidden The IP address got blocked, because the scanner sent too many re-

quests.

4. 429 Too many requests The same as 403 Forbidden; the IP address got blocked,

because too many requests were sent.

If the IP address got blocked or the web cache or the web server was unavailable the status

code received by the WCVS changed. Every technique received this same status code

which was di�erent from the initial status code. Thus, every technique and variant was

reported as successful after the change of the status code happened.

Content-Length For 72437 �ndings the successful poisoning indicator is a change of

the content-length, whereas 68995 came from only two of the 51 tested domains. These

two domains in particular have multiple subdomains where some �les are updated every

few minutes. WCVS treated a change of the content-length as a successful poisoning

indicator for every tested technique and variant afterwards, if the length di�ered more

than 2000 bytes as speci�ed by one of the command-line �ags. Four domains had only one

�nding with this successful poisoning indicator, however the reported behavior could not

be replicated. The remaining domains with �ndings with the content-length as successful

poisoning indicator also had periodic or sudden �le changes which were independent of the

tests.

48 CHAPTER 4. TESTING FOR WEB CACHE POISONING

4.6 False Positives Countermeasures

Two types of false positives could be identi�ed. The �rst type, which only occurred one

time, is that the targeted website contains a string in its headers or body which is randomly

used by WCVS as poison value. This is especially likely if a short poison value, for example

a valid port number, is used. The second type, which was accountable for almost every

false positive, was that the response of the server changed independently from the scan.

The �rst type is simple yet e�ective to solve. When WCVS generates a poison value

it needs to check this value before using it for a request. For the stored website response

must be checked whether this poison value is already present. In this case a new poison

value must be generated, checked for its existence again. This process is repeated until a

unique value could be found or until a speci�ed amount of tries was not successful. If no

unique value could be found, an error will be thrown.

The second type can also be solved simply yet e�ectively. When WCVS spots the

status code or content-length indicator it reports a �nding. Instead it should issue another

victim request with another cachebuster value, thus receiving a response from the web

server and not from the web cache. If the response di�ers from the expected and stored

default response, the default response is replaced by the new received one. Afterwards, the

check for successful poisoning indicators is repeated.

Chapter 5

Conclusion

In this thesis, the known web cache poisoning techniques were correlated on the basis of

their impact and their preconditions. During the thesis Web Cache Vulnerability Scanner

(WCVS) was enhanced with �ve more techniques, so that it is able to identify all the

mentioned web cache poisoning techniques. Also WCVS's ability to �nd cachebusters,

which are mandatory to test for web cache poisoning, was improved. Afterwards, websites

were chosen to test for web cache poisoning using WCVS. Only websites which had a

bug bounty program and allowed the use of automatic scanners were considered in order

to avoid any legal troubles. Additionally, only websites which are within the top 1000

of the world's most frequently visited websites were chosen. All in all 73620 URLs were

tested belonging to 51 domains and their subdomains. The results revealed that for 31%

of the URLs no hit or miss indicator could be found. Therefore, for these URLs there was

probably no web cache in use. For further 67% of the URLs the web cache was con�gured

to not cache the responses, thus always passing requests to the web server. Only for 946

URLs a cachebuster could be identi�ed and thus only these URLs could be tested for web

cache poisoning. Out of these URLs 11 were found to be vulnerable to web cache poisoning.

Interestingly, all a�ected URLs were vulnerable to the same web cache poisoning technique

�unkeyed header poisoning�.

Those tests proved the e�ectiveness of WCVS. The starts of the tests could be auto-

mated in order to start multiple tests with di�erent command line �ags. WCVS crawled

successfully for further URLs to test and excluded URLs from the test which did not get

cached or did not have a cachebuster in order to not waste time and other resources. This

left just under 1000 URLs to test. WCVS found web cache poisoning in 11 of these URLs.

The results were analyzed with automated scripts to quickly locate �ndings. Two not

anticipated circumstances resulted in a vast amount of false positives. These two circum-

stances were quickly identi�ed and simple yet e�ective solutions for both were presented.

These solutions will be implemented into WCVS soon.

49

50 CHAPTER 5. CONCLUSION

The tested websites and therefore the results of the tests are not representative for

the rest of the Internet, because of two reasons. The �rst reason is that the number of

scanned websites may simply not be big enough. The second reason is that the selection

of websites was based on very speci�c criteria. On the one hand only websites of the 1000

most frequently visited ones worldwide were chosen. Therefore, the selection does not

include amateur, small-sized or medium-sized websites. On the other hand only websites

with a bug bounty program were chosen. Almost every bug bounty program was active

for many months, if not years. During this time many web cache poisoning vulnerabilities

may have already been reported and �xed. However, the selection of websites had to be

this speci�c in order to be legally safe and to get a �rst insight into the spread of web

cache poisoning. Future work has to show more representative insight into the spread and

impact of web cache poisoning for the whole Internet. WCVS proved itself to be suitable

for automated scanning for web cache poisoning and therefore is an appropriate candidate

for further automated tests.

Appendix A

Additional Information

51

52 APPENDIX A. ADDITIONAL INFORMATION

A.1 WCVS Help Output

Summary
The website is vulnerable to web cache poisoning

Affected URLs
- x
- y
- z

Description
The header {Header} influences the HTTP response of the web server. It is possible to
write arbitrary content into the body/{Header2} header of the HTTP response. However,
this header does not get included in the cache key. Hence, if a HTTP response which was
influenced by the {Header} header gets cached this HTTP response will be served to
other users. The consequences can be devastating if the attacker is able to exploit
another vulnerability.

Steps to Reproduce
Two requests are sent. The first one utilizes the {Header Name} header to generate an
influenced HTTP response. The second one does not utilize the {Header} header,
however receives the same influenced HTTP response, as the {Header} header is not
included into the cache key. In order for the first response to be cached a cachebuster is
used. In this case the cachebuster is a query parameter called “cb” with a long number as
value.

Request 1:
GET /?cb=123456789 HTTP/1.1
Host: example.com
{Header}: foobar

Request 2:
GET /?cb=123456789 HTTP/1.1
Host: example.com

Recommendation
Every part of a HTTP request which has any influence on the HTTP response should be
included into the cache key.

Further Information
For further information on web cache poisoning check out
https://hackmanit.de/de/blog/142-is-your-application-vulnerable-to-web-cache-poisoning

A.2. REPORT TEMPLATE 53

A.2 Report Template

54 APPENDIX A. ADDITIONAL INFORMATION

Listings

2.1 Request with cache key �example.com/index.php� 8

2.2 Response to previous request . 8

2.3 Malicious request with cache key �example.com/index.php� 8

2.4 Response to previous malicious request . 8

2.5 Fat GET request . 10

2.6 HTTP request smuggling example [21] . 11

2.7 Common request to HTTP response splitting vulnerable website and its

response [1] . 12

2.8 HTTP response splitting request [1] . 13

2.9 HTTP response splitting response [1] . 13

3.1 Program �ow of WCVS in pseudeocode . 24

3.2 Inner loop for HTTP Request Smuggling in pseudeocode 25

3.3 HTTP Request Smuggling variant . 31

4.1 Shortened request of the �rst �nding . 42

4.2 Shortened response of the �rst �nding . 42

4.3 Shortened request of the second �nding . 43

4.4 Shortened response of the second �nding (part 1) 43

4.5 Shortened response of the second �nding (part 2) 43

4.6 Shortened request of the third �nding . 44

4.7 Shortened request of the fourth �nding . 44

4.8 Shortened response of the fourth �nding . 45

55

56 LISTINGS

List of Figures

2.1 The HTTP proxy feature of Burp Suite . 17

2.2 The repeater feature of Burp Suite . 18

4.1 Bug bounty program rules regarding the use of automated scanners 36

4.2 Amount of discovered subdomains per subdomain 37

4.3 Amount of subdomains and URLs with no connection or an error during the

cache analysis . 39

4.4 Amount of identi�ed hit or miss indicators 40

4.5 Amount of identi�ed cachebusters . 41

4.6 Amount of false positives . 45

57

58 LIST OF FIGURES

List of Tables

2.1 Impact of the di�erent web cache poisoning techniques. 5

2.2 Preconditions of the di�erent web cache poisoning techniques. 7

3.1 Di�erences between a paradigmatic penetration tester and a paradigmatic

bug bounty hunter. 19

3.2 Comparison of web cache poisoning scanners. 20

59

60 LIST OF TABLES

Bibliography

[1] Amit Klein. �Divide and Conquer�: HTTP Response Splitting, Web Cache Poisoning

Attacks, and Related Topics. 2004. url: https://dl.packetstormsecurity.

net/papers/general/whitepaper_httpresponse.pdf.

[2] James Kettle. Practical Web Cache Poisoning: Rede�ning 'Unexploitable'. 2018. url:

https://portswigger.net/kb/papers/7q1e9u9a/web-cache-poisoning.

pdf.

[3] James Kettle. Bypassing Web Cache Poisoning Countermeasures. 2018. url: https:

//portswigger.net/research/bypassing- web- cache- poisoning-

countermeasures.

[4] James Kettle. Responsible denial of service with web cache poisoning. 2019. url:

https://portswigger.net/research/responsible-denial-of-service-

with-web-cache-poisoning.

[5] James Kettle. Web Cache Entanglement: Novel Pathways to Poisoning. 2020. url:

https://portswigger.net/kb/papers/c3wwniai/web-cache-entanglement.

pdf.

[6] Hoai Viet Nguyen, Luigi Lo Iacono, and Hannes Federrath. �Your Cache Has Fallen:

Cache-Poisoned Denial-of-Service Attack�. In: CCS'19. Proceedings of the 2019 ACM

SIGSAC Conference on Computer and Communications Security, London, United

Kingdom, November 11-15, 2019. CCS '19: 2019 ACM SIGSAC Conference on Com-

puter and Communications Security (London United Kingdom). Ed. by Lorenzo Cav-

allaro et al. New York, NY: Association for Computing Machinery, 2019, pp. 1915�

1936. isbn: 9781450367479. doi: 10.1145/3319535.3354215.

[7] Aleksei Tiurin. Cache poisoning denial-of-service attack techniques. 2021. url: https:

//www.acunetix.com/blog/web-security-zone/cache-poisoning-

dos-attack-techniques/.

[8] Ramón Cáceres et al. �Web proxy caching�. In: ACM SIGMETRICS Performance

Evaluation Review 26.3 (1998), pp. 11�15. issn: 0163-5999. doi: 10.1145/306225.

306230.

61

https://dl.packetstormsecurity.net/papers/general/whitepaper_httpresponse.pdf
https://dl.packetstormsecurity.net/papers/general/whitepaper_httpresponse.pdf
https://portswigger.net/kb/papers/7q1e9u9a/web-cache-poisoning.pdf
https://portswigger.net/kb/papers/7q1e9u9a/web-cache-poisoning.pdf
https://portswigger.net/research/bypassing-web-cache-poisoning-countermeasures
https://portswigger.net/research/bypassing-web-cache-poisoning-countermeasures
https://portswigger.net/research/bypassing-web-cache-poisoning-countermeasures
https://portswigger.net/research/responsible-denial-of-service-with-web-cache-poisoning
https://portswigger.net/research/responsible-denial-of-service-with-web-cache-poisoning
https://portswigger.net/kb/papers/c3wwniai/web-cache-entanglement.pdf
https://portswigger.net/kb/papers/c3wwniai/web-cache-entanglement.pdf
https://doi.org/10.1145/3319535.3354215
https://www.acunetix.com/blog/web-security-zone/cache-poisoning-dos-attack-techniques/
https://www.acunetix.com/blog/web-security-zone/cache-poisoning-dos-attack-techniques/
https://www.acunetix.com/blog/web-security-zone/cache-poisoning-dos-attack-techniques/
https://doi.org/10.1145/306225.306230
https://doi.org/10.1145/306225.306230

62 BIBLIOGRAPHY

[9] G. Barish and K. Obraczke. �World Wide Web caching: trends and techniques�. In:

IEEE Communications Magazine 38.5 (2000), pp. 178�184. issn: 0163-6804. doi:

10.1109/35.841844.

[10] Hoai Viet Nguyen, Luigi Lo Iacono, and Hannes Federrath. �Mind the cache�. In:

Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. SAC '19:

The 34th ACM/SIGAPP Symposium on Applied Computing (Limassol Cyprus).

Ed. by Chih-Cheng Hung and George A. Papadopoulos. New York, NY, USA: ACM,

4082019, pp. 2497�2506. isbn: 9781450359337. doi: 10.1145/3297280.3297526.

[11] Seyed Ali Mirheidari. Confused by Path: Analysis of Path Confusion Based Attacks.

2020. url: https://iris.unitn.it/retrieve/handle/11572/280512/

382175/rpo/.

[12] Rajkumar Buyya, Mukaddim Pathan, and Athena Vakali, eds. Content delivery net-

works. eng. Vol. 9. Lecture notes in electrical engineering. Berlin: Springer, 2010.

417 pp. isbn: 3642096700.

[13] Run Guo et al. �Abusing CDNs for Fun and Pro�t: Security Issues in CDNs' Origin

Validation�. In: 2018 IEEE 37th International Symposium on Reliable Distributed

Systems. SRDS 2018. Piscataway, NJ: IEEE, 2018. isbn: 9781538683019. doi: 10.

1109/srds.2018.00011.

[14] R. Fielding, M. Nottingham, and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1):

Caching. RFC 7234. IETF. 2014. url: http://tools.ietf.org/rfc/rfc7234.

txt.

[15] Ankit Shrivastava, Santosh Choudhary, and Ashish Kumar. �XSS vulnerability as-

sessment and prevention in web application�. In: Proceedings on 2016 2nd Inter-

national Conference on Next Generation Computing Technologies (NGCT). Octo-

ber 14th-16th, 2016, Center for Information Technology, University of Petroleum

and Energy Studies, Dehradun. 2016 2nd International Conference on Next Gener-

ation Computing Technologies (NGCT) (Dehradun, India). Ed. by Amit Agarwal.

NGCT et al. Piscataway, NJ: IEEE, 2016, pp. 850�853. isbn: 978-1-5090-3257-0. doi:

10.1109/NGCT.2016.7877529.

[16] Roger M. Needham. �Denial of service�. In: Proceedings of the 1st ACM conference on

Computer and communications security. the 1st ACM conference (Fairfax, Virginia,

United States). Ed. by Dorothy Denning. ACM Special Interest Group on Security,

Audit, and Control. New York, NY: ACM, 1993, pp. 151�153. isbn: 0897916298. doi:

10.1145/168588.168607.

[17] Craig A. Shue, Andrew J. Kalafut, and Minaxi Gupta. Exploitable Redirects on the

Web: Identi�cation, Prevalence, and Defense. 2008. url: https://www.usenix.

org/legacy/event/woot08/tech/full_papers/shue/shue.pdf.

https://doi.org/10.1109/35.841844
https://doi.org/10.1145/3297280.3297526
https://iris.unitn.it/retrieve/handle/11572/280512/382175/rpo/
https://iris.unitn.it/retrieve/handle/11572/280512/382175/rpo/
https://doi.org/10.1109/srds.2018.00011
https://doi.org/10.1109/srds.2018.00011
http://tools.ietf.org/rfc/rfc7234.txt
http://tools.ietf.org/rfc/rfc7234.txt
https://doi.org/10.1109/NGCT.2016.7877529
https://doi.org/10.1145/168588.168607
https://www.usenix.org/legacy/event/woot08/tech/full_papers/shue/shue.pdf
https://www.usenix.org/legacy/event/woot08/tech/full_papers/shue/shue.pdf

BIBLIOGRAPHY 63

[18] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identi�er (URI):

Generic Syntax. RFC 3986. IETF. 2005. url: https://datatracker.ietf.

org/doc/html/rfc3986.

[19] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message Syn-

tax and Routing. RFC 7230. IETF. 2014. url: https://datatracker.ietf.

org/doc/html/rfc7230.

[20] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Semantics and

Content. RFC 7231. IETF. 2014. url: https://datatracker.ietf.org/doc/

html/rfc7231.

[21] Chaim Linhart et al. HTTP REQUEST SMUGGLING. 2005. url: https://www.

cgisecurity.com/lib/HTTP-Request-Smuggling.pdf.

[22] R. Fielding et al. Hypertext Transfer Protocol � HTTP/1.1. RFC 2616. IETF. 1999.

url: http://tools.ietf.org/rfc/rfc2616.txt.

[23] Haixin Duan. Forwarding-Loop Attacks in Content Delivery Networks. 2016. url:

https://www.researchgate.net/profile/haixin_duan/publication/

307578711_forwarding-loop_attacks_in_content_delivery_networks.

[24] Omer Gil.Web cache deception attack. 2017. url: https://www.blackhat.com/

docs/us-17/wednesday/us-17-gil-web-cache-deception-attack-

wp.pdf.

[25] James Kettle. HTTP Desync Attacks. Request Smuggling Reborn. 2019. url: https:

//portswigger.net/kb/papers/z7ow0oy8/http-desync-attacks.pdf.

[26] Victor Le Pochat et al. �Tranco: A Research-Oriented Top Sites Ranking Hardened

Against Manipulation�. In: Proceedings 2019 Network and Distributed System Secu-

rity Symposium. Network and Distributed System Security Symposium (San Diego,

CA). Ed. by Alina Oprea and Dongyan Xu. Reston, VA: Internet Society, February

24-27, 2019. isbn: 1-891562-55-X. doi: 10.14722/ndss.2019.23386.

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7231
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
http://tools.ietf.org/rfc/rfc2616.txt
https://www.researchgate.net/profile/haixin_duan/publication/307578711_forwarding-loop_attacks_in_content_delivery_networks
https://www.researchgate.net/profile/haixin_duan/publication/307578711_forwarding-loop_attacks_in_content_delivery_networks
https://www.blackhat.com/docs/us-17/wednesday/us-17-gil-web-cache-deception-attack-wp.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-gil-web-cache-deception-attack-wp.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-gil-web-cache-deception-attack-wp.pdf
https://portswigger.net/kb/papers/z7ow0oy8/http-desync-attacks.pdf
https://portswigger.net/kb/papers/z7ow0oy8/http-desync-attacks.pdf
https://doi.org/10.14722/ndss.2019.23386

64 BIBLIOGRAPHY

	Introduction
	Foundations
	Web Caches
	Web Site Vulnerabilities
	Web Cache Vulnerabilities
	Web Cache Poisoning Impact
	Web Cache Poisoning Preconditions
	Web Cache Poisoning Techniques
	Web Cache Poisoning Countermeasures
	Web Cache Deception

	Burp Suite
	Bug Bounties

	Web Cache Vulnerability Scanner
	Use Cases
	Contestants
	Key Features
	Program Flow
	Hit or Miss Indicatros
	Cachebusters
	Successful Poisoning Indicators
	Implementation of Web Cache Poisoning Techniques
	Setup and Usage

	Testing for Web Cache Poisoning
	Selection of Websites
	Test Approach
	Statistics
	Found Web Cache Poisoning Vulnerabilities
	False Positives
	False Positives Countermeasures

	Conclusion
	Additional Information
	WCVS Help Output
	Report Template

	List of Listings
	List of Figures
	List of Tables
	Bibliography
	Affidavit

