

Source Code Analysis and Penetration Test Report:

openconext-saml-java

Version: 1.0.1 15.01.2024

Juraj Somorovsky Phone: +49(0)234 / 54459996 | E-Mail: Juraj.Somorovsky@hackmanit.de

Project Information

Customer:	SURF BV Postbus 19035 3501 Utrecht, Netherlands	
Contact:	Peter Havekes	
Commissioned to:	Hackmanit GmbH Universitätsstraße 60 (Exzenterhaus) 44789 Bochum, Germany	
Project executive:	Juraj Somorovsky Phone: +49(0)234 / 54459996 Fax: +49(0)234 / 54427593 E-Mail: Juraj.Somorovsky@hackmanit.de	
Project members:	Karsten Meyer zu Selhausen (Hackmanit GmbH)	

Project period: 11.12.2023 – 19.12.2023

Version of the report: 1.0.1

This report was technically verified by Juraj Somorovsky. This report was linguistically verified by Karsten Meyer zu Selhausen.

Hackmanit GmbH Represented by: Prof. Dr. Jörg Schwenk, Prof. Dr. Juraj Somorovsky, Dr. Christian Mainka, Prof. Dr. Marcus Niemietz Register court: Amtsgericht Bochum, HRB 14896, Germany

Contents

2Project Timeline43Methodology44General Conditions and Scope55Overview of Weaknesses, Recommendations, and Information66Weaknesses 6.1 M01 XML Signature Wrapping Attack Targeting Signed Authentication Requests77Recommendations 7.1 R01 Improving the Configuration of Security-Related Headers138Further Evaluations139References15	1	Summary	3
3Methodology44General Conditions and Scope55Overview of Weaknesses, Recommendations, and Information66Weaknesses 6.1 M01 XML Signature Wrapping Attack Targeting Signed Authentication Requests77Recommendations 7.1 R01 Improving the Configuration of Security-Related Headers118Further Evaluations139References15	2	Project Timeline	4
4General Conditions and Scope55Overview of Weaknesses, Recommendations, and Information66Weaknesses 6.1 M01 XML Signature Wrapping Attack Targeting Signed Authentication Requests77Recommendations 7.1 R01 Improving the Configuration of Security-Related Headers118Further Evaluations139References15	3	Methodology	4
5 Overview of Weaknesses, Recommendations, and Information 6 6 Weaknesses 6.1 M01 XML Signature Wrapping Attack Targeting Signed Authentication Requests 7 7 Recommendations 7.1 R01 Improving the Configuration of Security-Related Headers 11 8 Further Evaluations 13 9 References 15	4	General Conditions and Scope	5
6 Weaknesses 7 6.1 M01 XML Signature Wrapping Attack Targeting Signed Authentication Requests 7 7 Recommendations 11 7.1 R01 Improving the Configuration of Security-Related Headers 11 8 Further Evaluations 13 9 References 14	5	Overview of Weaknesses, Recommendations, and Information	6
7 Recommendations 11 7.1 R01 Improving the Configuration of Security-Related Headers 11 8 Further Evaluations 13 9 References 15	6	Weaknesses 6.1 M01 XML Signature Wrapping Attack Targeting Signed Authentication Requests	7 7
8 Further Evaluations139 References15	7	Recommendations 7.1 R01 Improving the Configuration of Security-Related Headers	11 11
9 References 15	8	Further Evaluations	13
	9	References	15

1 Summary

Hackmanit GmbH was commissioned by SURF to perform a source code analysis and penetration test of their open-source library "openconext-saml-java" and an identity provider (IdP) test implementation based on the library. The source code analysis and penetration test were performed remotely with a total expense of four man-days – including documentation and writing of this report.

Weaknesses. During our penetration test, one weakness was identified and classified as Medium. The weakness M01 allows an attacker to execute an XML signature wrapping (XSW) attack on SAML authentication requests, which are processed by the IdP. With this attack, it is possible to arbitrarily modify the authentication request's contents even if they are protected by XML Signatures.

The impact of this attack on SAML authentication requests is rather small; SAML authentication requests typically only contain data, which are defined in the IdP metadata. Nevertheless, relying on a vulnerable XML Signature validation could introduce unrestricted trust in the message content and result in weaknesses in future deployments.

Recommended Actions. As part of the penetration test, we implemented JUnit tests evaluating this weakness with 12 malicious files and created a pull request to sustainably prevent this kind of weakness in the development process. We also presented countermeasures circumventing the identified weaknesses and recommend implementing them.

Structure. The report is structured as follows: In Section 2, the timeline of the penetration test is listed. Section 3 introduces our methodology and Section 4 explains the general conditions and scope of the penetration test. Section 5 provides an overview of the identified weaknesses, as well as, further recommendations and information. In Section 6, all identified weaknesses are discussed in detail and specific countermeasures are described. Section 7 summarizes our recommendations resulting from observations of the application. Finally, Section 8 lists additional tests that did not reveal any weaknesses.

2 Project Timeline

The source code analysis and penetration test were carried out remotely from 11.12.2023 to 19.12.2023. The library "openconext-saml-java" developed by SURF, as well as, an IdP test implementation provided by SURF were examined by two people with the entire effort of four man-days – including documentation and writing of this report.

3 Methodology

Among others, the following tools were used for the penetration test:

ΤοοΙ	Link
Mozilla Firefox	https://www.mozilla.org/de/firefox/
Burp Suite Professional	https://portswigger.net/burp
Self-developed tools	-

Risk Rating. Each weakness has its own CVSS 3.1 base score rating (Common Vulnerability Scoring System Version 3.1 Calculator).^{1,2} Based on the CVSS 3.1 base score, the following weaknesses assessment is performed:

0.0 – 3.9:	Low
4.0 – 6.9:	Medium
7.0 – 8.9:	High
9.0 – 10.0:	Critical

¹https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator ²https://www.first.org/cvss/v3.1/user-guide

4 General Conditions and Scope

In the scope of the penetration test / source code analysis was the open-source library "openconext-saml-java" developed by SURF, as well as, a test implementation provided by SURF. The "openconext-saml-java" library allows to implement a SAML-based identity provider (IdP). The source code is available on GitHub³ and was examined at the stage of commit 86f31be28d04d4da65a39b193591959536d9f752.

SURF provided access to a test environment with a running IdP called "edulD (NL) test environment" and SAML service provider (SP) called "Open ID Connect Playground"⁴. The SP was not in the scope of the penetration test. Hackmanit could register own test accounts at the test IdP for the penetration test. The test services were available at the following URLs:

Service	URL
IdP	https://login.test.eduid.nl
SP (out of scope)	https://oidc-playground.test.surfconext.nl

Table 1: Overview of test services used during the penetration test.

³https://github.com/OpenConext/openconext-saml-java

⁴Despite its name the SP supported both OpenID Connect (OIDC) and SAML.

5 Overview of Weaknesses, Recommendations, and Information

Risk Level	Finding		Reference
M01	XML Sig Authenti XML Sign tacker to nature an tents.	nature Wrapping Attack Targeting Signed ication Requests: The IdP is vulnerable to nature Wrapping attacks. This allows an at- bypass the protection provided by the sig- nd arbitrarily manipulate the request's con-	Section 6.1, page 7
R01	Improvin Headers headers harden it	In the Configuration of Security-Related The configuration of security-related HTTP set by the IdP should be improved to further is security.	Section 7.1, page 11
Risk Definition	IS:		
Critical	Risk	Weaknesses classified as Critical can be exerption of the exerption of the system of t	xploited with very little negative effects on the stem environment.
High R	isk	Weaknesses classified as High can be exp by an attacker. They have a major negativ system, its users and data, or the system er	ploited with little effort e impact on the tested avironment.
Medium	Risk	Weaknesses classified as Medium can be effort by an attacker. They have a medium tested system, its users and data, or the sys	exploited with medium negative impact on the stem environment.
Low R	isk	Weaknesses classified as Low can only be e fort by an attacker. They have little negativ system, its users and data, or the system er	exploited with great ef- ve impact on the tested avironment.
Recommer	ndation	Recommendation identifies measures that rity of the tested system. Implementation is necessarily required.	may increase the secu- recommended, but not
Informa	tion	Observations classified as Information are unus Examples of these observations are unus possibly unwanted behavior of the tested s	usually no weaknesses. ual configurations and ystem.

6 Weaknesses

In the following sections, we list the identified weaknesses. Every weakness has an identification name which can be used as a reference in the event of questions, or during the patching phase.

6.1 M01 XML Signature Wrapping Attack Targeting Signed Authentication Requests

Exploitability Metrics		Impact Metrics	
Attack Vector (AV)	Network	Confidentiality Impact (C)	Low
Attack Complexity (AC)	Low	Integrity Impact (I)	Low
Privileges Required (PR)	Low	Availability Impact (A)	None
User Interaction (UI)	Required	Scope (S)	Unchanged
Subscore: 2.1		Subscore: 2.5	•

Overall CVSS Score for M01: 4.6

General Description. To protect the integrity and authenticity of SAML authentication requests, the whole AuthnRequest element can be digitally signed. The SAML specification [1] prescribes that the AuthnRequest element is protected with an enveloped XML Signature [2].

Listing 1 provides an example of a signed SAML authentication request.

The present XML Signature references the AuthnRequest root element using its ID (A524bd1eb-20b6-4f60-8d83-e56470b77580) and protects its integrity by computing the digest value. This ensures authenticity and integrity of data contained in the AuthnRequest element, for example, the attributes Destination and AssertionConsumerServiceURL.

1	<pre><saml2p:authnrequest <="" pre="" xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol"></saml2p:authnrequest></pre>
	AssertionConsumerServiceURL="https://engine.test.surfconext.nl/authentication/sp/
	consume-assertion" Destination= "https://mujina-idp.test.surfconext.nl/
	SingleSignOnService" ForceAuthn="true" ID="A524bd1eb-20b6-4f60-8d83-e56470b77580"
	IsPassive="false" IssueInstant="2023-12-15T12:42:49.740Z" ProtocolBinding="urn:oasis
	:names:tc:SAML:2.0:bindings:HTTP-POST" Version="2.0">
2	<pre><saml2:issuer xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion">https://engine.</saml2:issuer></pre>
	<pre>test.surfconext.nl/authentication/sp/metadata</pre>
3	<ds:signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#"></ds:signature>
4	<ds:signedinfo></ds:signedinfo>
5	<pre><ds:canonicalizationmethod <="" algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" pre=""></ds:canonicalizationmethod></pre>
	/>
6	<pre><ds:signaturemethod algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-</pre></td></tr><tr><td></td><td>sha512"></ds:signaturemethod></pre>
7	<pre><ds:reference uri="#A524bd1eb-20b6-4f60-8d83-e56470b77580"></ds:reference></pre>
8	<ds:transforms></ds:transforms>
9	<pre><ds:transform algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-</pre></td></tr><tr><td></td><td>signature"></ds:transform></pre>
LO	<pre><ds:transform algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"></ds:transform></pre>
L1	
12	<ds:digestmethod algorithm="http://www.w3.org/2001/04/xmlenc#sha512"></ds:digestmethod>
L3	<ds:digestvalue></ds:digestvalue>
L4	
۱5	
16	<ds:signaturevalue></ds:signaturevalue>
L7	
18	
19	<ds:keyinfo></ds:keyinfo>
20	
21	
22	
23	<pre><saml2p:requestedauthncontext></saml2p:requestedauthncontext></pre>
24	<saml2:authncontextclassref xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"></saml2:authncontextclassref>
	https://refeds.org/profile/mfa
25	
26	

Listing 1: Example of a signed SAML authentication request.

For an IdP, it is critical to process only signed document parts [4]. For this purpose, the XML Signature verification and dereferencing of signed XML parts has to be performed; if an attacker is able to force the IdP to process unsigned data, they can arbitrarily modify the AuthnRequest element's contents.

Weakness. The source code analysis revealed that the tested IdP is vulnerable to XML signature wrapping attacks. A successful attack is depicted in Listing 2 and works as follows:

- An attacker executing the attack moves the original signed content to a different element. In this case, the whole AuthnRequest element is copied into the RequestedAuthnContext element (lines 25 - 30). Since the content is not modified, the XML Signature can still be successfully validated.
- 2. The attacker then removes the ID of the AuthnRequest root element (line 1); this ensures that the AuthnRequest root element is not referenced by the signature and thus is not integrity protected.
- 3. The attacker can finally change the content of the AuthnRequest root element. In this example, the Destination URL is changed to https://hackmanit.de/SingleSignOnService(line 1).

6 Weaknesses

<saml2p:AuthnRequest xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol"</pre> AssertionConsumerServiceURL="https://engine.test.surfconext.nl/authentication/sp/ consume-assertion" Destination="https://hackmanit.de/SingleSignOnService" ForceAuthn ="true" IsPassive="false" IssueInstant="2023-12-15T12:42:49.740Z" ProtocolBinding=" urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" Version="2.0"> <saml2:Issuer xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion">https://engine. 2 test.surfconext.nl/authentication/sp/metadata</saml2:Issuer> <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 3 <ds:SignedInfo> 4 5 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"</pre> 1> <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-</pre> 6 sha512"/> <ds:Reference URI="#A524bd1eb-20b6-4f60-8d83-e56470b77580"> 7 <ds:Transforms> 8 <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-</pre> 9 signature"/> <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 10 11 </ds:Transforms> <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha512"/> 12 <ds:DigestValue>...</ds:DigestValue> 13 </ds:Reference> 14 15 </ds:SignedInfo> <ds:SignatureValue> 16 17 18 </ds:SignatureValue> <ds:KeyInfo> 19 20 21 </ds:KeyInfo> </ds:Signature> 22 <saml2p:RequestedAuthnContext> 23 <saml2:AuthnContextClassRef xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"> 24 https://refeds.org/profile/mfa</saml2:AuthnContextClassRef> <saml2p:AuthnRequest xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol"</pre> 25 AssertionConsumerServiceURL="https://engine.test.surfconext.nl/authentication/ sp/consume-assertion" Destination="https://mujina-idp.test.surfconext.nl/ SingleSignOnService" ForceAuthn="true" ID="A524bd1eb-20b6-4f60-8d83e56470b77580" IsPassive="false" IssueInstant="2023-12-15T12:42:49.740Z" ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" Version="2.0" <saml2:Issuer xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion">https:// 26 engine.test.surfconext.nl/authentication/sp/metadata</saml2:Issuer> <saml2p:RequestedAuthnContext> 27 28 <saml2:AuthnContextClassRef xmlns:saml2="urn:oasis:names:tc:SAML:2.0:</pre> assertion">https://refeds.org/profile/mfa</saml2:AuthnContextClassRef> 29 </saml2p:RequestedAuthnContext> 30 </saml2p:AuthnRequest> </saml2p:RequestedAuthnContext> 31 </saml2p:AuthnRequest> 32

Listing 2: Successful XML signature wrapping attack targeting a signed SAML authentication request.

The IdP processing such message can successfully validate the signature over the original AuthnRequest element (lines 25 - 30). However, it retrieves the data from the modified AuthnRequest root element (line 1) and thus processes https://hackmanit.de/SingleSignOnService as a valid Destination.

Note that, while the XML signature wrapping attack breaks the authenticity and integrity of the XML Signature, its impact on SAML authentication request messages is rather small; SAML authentication requests typically only contain data, which are defined in the IdP metadata. Changing values such as AssertionConsumerServiceURL can be thus detected by other

means. Nevertheless, relying on a vulnerable XML Signature validation could introduce unrestricted trust in the message contents and result in weaknesses in future deployments.

The evaluated implementation uses the SignatureValidator.validate(signature, credential) function of the OpenSAML library's validation logic. However, this function only verifies the cryptographic correctness of the XML Signature.

To prevent XML signature wrapping attacks, the implementation needs to ensure that the processed message contents have been verified in the signature validation step. For this purpose, OpenSAML offers the SAMLSignatureProfileValidator class with its validate function. SAMLSignatureProfileValidator evaluates whether the included signature protects the correct root element and executes further checks preventing XML signature wrapping attacks.

In the scope of the penetration test, we extended the JUnit tests of the openconext-saml-java library with 12 XML signature wrapping test cases to evaluate this class of attacks directly during the development.⁵

Countermeasures. We recommend using the SAMLSignatureProfileValidator class with its validate function provided by the OpenSAML library to validate XML Signatures.

⁵https://github.com/OpenConext/openconext-saml-java/pull/1

7 Recommendations

7 Recommendations

In the following sections, we provide our recommendations to improve the security of the tested system.

7.1 R01 Improving the Configuration of Security-Related Headers

General Description. There are some HTTP headers that instruct browsers to enable security mechanisms. These security mechanisms are used to protect against attacks such as clickjack-ing, cross-site scripting (XSS), or man-in-the-middle (MitM).

The IdP frontend uses the security-related headers X-Frame-Options, Content-Security-Policy, X-Content-Type-Options, X-XSS-Protection, and Strict-Transport-Security. An example of the HTTP headers set by the IdP is depicted in Listing 3.

```
1 HTTP/1.1 200
2 date: Fri, 15 Dec 2023 10:36:41 GMT
3 server: Apache
4 content-security-policy: default-src 'none'; script-src 'self' 'unsafe-inline'; style-
      src 'self' 'unsafe-inline'; font-src 'self'; connect-src 'self' https://connect.test
      .surfconext.nl; img-src 'self' https://static.surfconext.nl data:; form-action 'self
       https://*.test.surfconext.nl; frame-ancestors 'none'; base-uri 'none'
5 x-frame-options: DENY
6 referrer-policy: same-origin
  x-content-type-options: nosniff
7
8 cache-control: no-cache, no-store, max-age=0, must-revalidate
9 pragma: no-cache
10 expires: 0
11 x-content-type-options: nosniff
12 x-xss-protection: 1; mode=block
13 x-frame-options: DENY
14 content-type: text/html;charset=UTF-8
15 set-cookie: HTTPSERVERID=javaapps/ZXwsP; path=/; HttpOnly; Secure; SameSite=None
16 strict-transport-security: max-age=34214400
17
  connection: close
18 Content-Length: 15888
19
  [...]
20
```

Listing 3: Example of a response with the HTTP headers set by the IdP.

The configuration of the security-related HTTP headers can be improved by the following adjustments:

- Content-Security-Policy The content security policy (CSP) used by the IdP contains
 the value unsafe-inline for the directives script-src and style-src. This pre vents the CSP from being an effective countermeasure against attacks such as XSS. The
 value unsafe-inline should be removed if possible. An example CSP including more
 detailed explanations can be found on the following page: https://cheatsheetseries.owa
 sp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html#csp-sample-policies.
- **X-XSS-Protection** The HTTP header X-XSS-Protection can be used to configure the state of the XSS auditor (Google Chrome) or XSS filter (Internet Explorer). In the

past, it was recommended to deliver the HTTP header X-XSS-Protection: 1; mode=block so that XSS attacks can be blocked in case of detection via an error page. However, due to cross-site leak (XS-Leak) attacks, it is recommended to disable the XSS protection mechanism. Browser vendors such as Google no longer deliver a filter or auditor for protection against XSS in new versions.⁶ We therefore recommend explicitly setting the HTTP header to X-XSS-Protection: 0 to disable the XSS auditor or XSS filter and thus prevent any possible XS-Leak attacks.

- Strict-Transport-Security To extend the protection against MitM attacks, the value of this header could be extended to Strict-Transport-Security: max-age=34214400; includeSubDomains.
- **Server** To prevent disclosing information about the software in use, we recommend removing the Server header. This information could be valuable to attackers and be used for further attacks.
- **Duplicate Headers** The two headers X-Content-Type-Options and X-Frame-Options are present twice in the IdP's responses. It is likely that the duplicate headers are set by different systems or applications. The duplicate headers have the same value in the tested case. However, it is possible that different systems use different values for the headers. This could result in unintended behavior on the receiver side [3]. We recommend making sure each header is only set by one system.

Recommendation. We recommend adjusting the HTTP header configuration of the IdP as described above.

⁶https://www.chromium.org/developers/design-documents/xss-auditor

8 Further Evaluations

In this section, we list further evaluations we conducted in our penetration test. It provides useful information for future security evaluations.

XML Parser Configuration. The library defines the configuration of the XML parser in the getParserBuilderFeatures() function (lines 156-165 in DefaultSAMLService.java). The configuration was examined for missing security-related settings. No weaknesses could be identified. Most importantly the processing of Document Type Definitions (DTDs) is disabled.

Document Type Definition (DTD) / XML External Entity (XXE). As described above the processing of DTDs is disabled according to the XML parser configuration. It was practically evaluated whether this configuration is effective or if DTDs are processed anyway. During the penetration test it was not possible to make the IdP process DTDs. The tested payloads for XXE attacks were not successful. The IdP responded with an error message in all tested cases.

XML Injection. It was evaluated whether it was possible to inject XML elements or attributes into the SAML response or SAML assertion by manipulating elements or attributes in the SAML request. For example, quot; hackmanit= quot;XYZ was added at the end of the ID attribute of the SAML request. The IdP did not decode the XML entities in the injected string and used the exact same value of the ID attribute as the value of the InResponseTo attribute in the SAML response.

ACS Spoofing. The IdP was evaluated for ACS spoofing attacks. Their goal is to make the IdP sent the SAML assertion to an attacker-controlled domain instead of the SP. For this purpose, the attribute AssertionConsumerServiceURL present in the SAML request was replaced with different manipulated values. The IdP was not vulnerable to ACS spoofing attacks. Manipulating the domain or path of the genuine AssertionConsumerServiceURL of the SP resulted in the IdP rejecting the SAML request with an error message. The same happened when the whole URL was replaced with an arbitrary one (e.g., https://hackmanit.de), an invalid value (e.g., null), or when the attribute was removed completely.

Server-Side Request Forgery (SSRF). The SAML request contains URLs in multiple elements and attributes. When these URLs were replaced with an URL controlled by Hackmanit the IdP did not invoke the URL. It was not possible to make the IdP access arbitrary URLs.

Manipulations of the RequesterID Elements. The RequesterID elements in the SAML request were altered or removed. The presence and value of a RequesterID element influences the AttributeStatement in the SAML response. While mostAttribute elements containing information about the authenticated user are not influences by the RequesterID elements in the SAML request the attribute called urn:mace:eduid.nl:1.1 contains different values when the RequesterID element in the SAML request differs. According to SURF this is intended behavior.

Other Manipulations in the SAML Request. The SAML request was manipulated in other ways such as manipulating the Issuer element, the Destination or ProtocolBinding attributes, or adding a NameIDPolicy element or IsPassive attribute. None of these manipulations revealed any weaknesses. In addition, adding a Subject element with a user

identity other than the account used for the subsequent login, did not have any effect on the issued SAML assertion. The assertion contained the correct identifiers for the identity of the account logged in during the protocol flow. Except for the Issuer element, the elements and attributes mentioned above seem to be ignored by the IdP.

RelayState. A new RelayState parameter was added to the request and sent along with the SAMLRequest. The RelayState was processed and reflected by the IdP. However, it was not possible to find an exploitable reflection leading to weaknesses.

Node Splitting Attacks. The IdP was examined for its vulnerability to node splitting attacks, which exploit splitting of validated text nodes after successful XML Signature validation.⁷ Different variants of these attacks with the help of comments and CDATA sections were tested. None of the tests was successful.

 $^{^{7}} https://i.blackhat.com/us-18/Thu-August-9/us-18-Ludwig-Identity-Theft-Attacks-On-SSO-Systems.pdf$

9 References

- [1] Scott Cantor et al. Assertions and Protocol for the OASIS Security Assertion Markup Language (SAML) V2.0. OASIS Standard. Organization for the Advancement of Structured Information Standards, 2005. url: http://docs.oasis-open.org/security/saml/v2.0/samlcore-2.0-os.pdf.
- [2] Donald Eastlake et al. "XML Signature Syntax and Processing (Second Edition)". In: W3C Recommendation (2008).
- [3] Hendrik Siewert et al. "On the Security of Parsing Security-Relevant HTTP Headers in Modern Browsers". In: 2022 IEEE Security and Privacy Workshops (SPW). 2022, pp. 342– 352. doi: 10.1109/SPW54247.2022.9833880.
- [4] Juraj Somorovsky et al. "On Breaking SAML: Be Whoever You Want to Be". In: 21st USENIX Security Symposium. Bellevue, WA, Aug. 2012.