
Source Code Analysis and Penetration Test
Report:

openconext-saml-java
Version: 1.0.1
15.01.2024

Juraj Somorovsky
Phone: +49(0)234 / 54459996 | E-Mail: Juraj.Somorovsky@hackmanit.de

https://hackmanit.de/

Project Information

Customer: SURF BV
Postbus 19035
3501 Utrecht, Netherlands

Contact: Peter Havekes

Commissioned to: Hackmanit GmbH
Universitätsstraße 60 (Exzenterhaus)
44789 Bochum, Germany

Project executive: Juraj Somorovsky
Phone: +49(0)234 / 54459996
Fax: +49(0)234 / 54427593
E-Mail: Juraj.Somorovsky@hackmanit.de

Project members: Karsten Meyer zu Selhausen (Hackmanit GmbH)

Project period: 11.12.2023 – 19.12.2023

Version of the report: 1.0.1

This report was technically verified by Juraj Somorovsky.
This report was linguistically verified by Karsten Meyer zu Selhausen.

Hackmanit GmbH
Represented by: Prof. Dr. Jörg Schwenk, Prof. Dr. Juraj Somorovsky,
Dr. Christian Mainka, Prof. Dr. Marcus Niemietz
Register court: Amtsgericht Bochum, HRB 14896, Germany

1

https://hackmanit.de/
https://hackmanit.de/
https://hackmanit.de

Contents

Contents

1 Summary 3

2 Project Timeline 4

3 Methodology 4

4 General Conditions and Scope 5

5 Overview of Weaknesses, Recommendations, and Information 6

6 Weaknesses 7
6.1 M01 XML SignatureWrapping Attack Targeting Signed Authentication Requests 7

7 Recommendations 11
7.1 R01 Improving the Configuration of Security-Related Headers 11

8 Further Evaluations 13

9 References 15

2

1 Summary

1 Summary

Hackmanit GmbHwas commissioned by SURF to perform a source code analysis and penetra-
tion test of their open-source library “openconext-saml-java” and an identity provider (IdP) test
implementation based on the library. The source code analysis and penetration test were per-
formed remotely with a total expense of four man-days – including documentation and writing
of this report.

Weaknesses. During our penetration test, one weakness was identified and classified as
Medium. Theweakness M01 allows an attacker to execute an XML signaturewrapping (XSW)
attack on SAML authentication requests, which are processed by the IdP. With this attack, it is
possible to arbitrarily modify the authentication request’s contents even if they are protected
by XML Signatures.

The impact of this attack on SAML authentication requests is rather small; SAML authentication
requests typically only contain data, which are defined in the IdP metadata. Nevertheless, rely-
ing on a vulnerable XML Signature validation could introduce unrestricted trust in the message
content and result in weaknesses in future deployments.

RecommendedActions. As part of the penetration test, we implemented JUnit tests evaluating
this weakness with 12malicious files and created a pull request to sustainably prevent this kind
of weakness in the development process. We also presented countermeasures circumventing
the identified weaknesses and recommend implementing them.

Structure. The report is structured as follows: In Section 2, the timeline of the penetration test
is listed. Section 3 introduces our methodology and Section 4 explains the general conditions
and scope of the penetration test. Section 5 provides an overview of the identifiedweaknesses,
as well as, further recommendations and information. In Section 6, all identified weaknesses
are discussed in detail and specific countermeasures are described. Section 7 summarizes our
recommendations resulting from observations of the application. Finally, Section 8 lists ad-
ditional tests that did not reveal any weaknesses.

3

https://hackmanit.de/

3 Methodology

2 Project Timeline

The source code analysis and penetration test were carried out remotely from 11.12.2023 to
19.12.2023. The library “openconext-saml-java” developed by SURF, as well as, an IdP test
implementation provided by SURF were examined by two people with the entire effort of four
man-days – including documentation and writing of this report.

3 Methodology

Among others, the following tools were used for the penetration test:

Tool Link
Mozilla Firefox https://www.mozilla.org/de/firefox/
Burp Suite Professional https://portswigger.net/burp
Self-developed tools -

Risk Rating. Each weakness has its own CVSS 3.1 base score rating (Common Vulnerability
Scoring System Version 3.1 Calculator).1,2 Based on the CVSS 3.1 base score, the following
weaknesses assessment is performed:

0.0 – 3.9: Low
4.0 – 6.9: Medium
7.0 – 8.9: High
9.0 – 10.0: Critical

1https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
2https://www.first.org/cvss/v3.1/user-guide

4

https://www.mozilla.org/de/firefox/
https://portswigger.net/burp
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://www.first.org/cvss/v3.1/user-guide

4 General Conditions and Scope

4 General Conditions and Scope

In the scope of the penetration test / source code analysis was the open-source library
“openconext-saml-java” developed by SURF, as well as, a test implementation provided by
SURF. The “openconext-saml-java” library allows to implement a SAML-based identity provider
(IdP). The source code is available on GitHub3 and was examined at the stage of commit
86f31be28d04d4da65a39b193591959536d9f752.

SURF provided access to a test environment with a running IdP called “eduID (NL) test envi-
ronment” and SAML service provider (SP) called “Open ID Connect Playground”4. The SP was
not in the scope of the penetration test. Hackmanit could register own test accounts at the test
IdP for the penetration test. The test services were available at the following URLs:

Service URL
IdP https://login.test.eduid.nl
SP (out of scope) https://oidc-playground.test.surfconext.nl

Table 1: Overview of test services used during the penetration test.

3https://github.com/OpenConext/openconext-saml-java
4Despite its name the SP supported both OpenID Connect (OIDC) and SAML.

5

https://login.test.eduid.nl
https://oidc-playground.test.surfconext.nl
https://github.com/OpenConext/openconext-saml-java

5 Overview of Weaknesses, Recommendations, and Information

5 Overview of Weaknesses, Recommendations, and Information

Risk Level Finding Reference

M01 XML Signature Wrapping Attack Targeting Signed
Authentication Requests: The IdP is vulnerable to
XML Signature Wrapping attacks. This allows an at-
tacker to bypass the protection provided by the sig-
nature and arbitrarily manipulate the request’s con-
tents.

Section 6.1, page 7

R01 Improving the Configuration of Security-Related
Headers: The configuration of security-related HTTP
headers set by the IdP should be improved to further
harden its security.

Section 7.1, page 11

Risk Definitions:

Critical Risk Weaknesses classified as Critical can be exploited with very little
effort by an attacker. They have very large negative effects on the
tested system, its users and data, or the system environment.

High Risk Weaknesses classified as High can be exploited with little effort
by an attacker. They have a major negative impact on the tested
system, its users and data, or the system environment.

Medium Risk Weaknesses classified as Medium can be exploited with medium
effort by an attacker. They have a medium negative impact on the
tested system, its users and data, or the system environment.

Low Risk Weaknesses classified as Low can only be exploited with great ef-
fort by an attacker. They have little negative impact on the tested
system, its users and data, or the system environment.

Recommendation Recommendation identifies measures that may increase the secu-
rity of the tested system. Implementation is recommended, but not
necessarily required.

Information Observations classified as Information are usually no weaknesses.
Examples of these observations are unusual configurations and
possibly unwanted behavior of the tested system.

6

6 Weaknesses

6 Weaknesses

In the following sections, we list the identified weaknesses. Every weakness has an identifica-
tion name which can be used as a reference in the event of questions, or during the patching
phase.

6.1 M01 XML Signature Wrapping Attack Targeting Signed Authentication
Requests

Exploitability Metrics Impact Metrics
Attack Vector (AV) Network Confidentiality Impact (C) Low
Attack Complexity (AC) Low Integrity Impact (I) Low
Privileges Required (PR) Low Availability Impact (A) None
User Interaction (UI) Required Scope (S) Unchanged
Subscore: 2.1 Subscore: 2.5

Overall CVSS Score for M01 : 4.6

General Description. To protect the integrity and authenticity of SAML authentication requests,
the whole AuthnRequest element can be digitally signed. The SAML specification [1] pre-
scribes that the AuthnRequest element is protectedwith an enveloped XML Signature [2].

Listing 1 provides an example of a signed SAML authentication request.

The present XML Signature references the AuthnRequest root element using its
ID (A524bd1eb-20b6-4f60-8d83-e56470b77580) and protects its integrity by
computing the digest value. This ensures authenticity and integrity of data con-
tained in the AuthnRequest element, for example, the attributes Destination and
AssertionConsumerServiceURL.

7

6 Weaknesses

1 <saml2p:AuthnRequest xmlns:saml2p=”urn:oasis:names:tc:SAML:2.0:protocol”
AssertionConsumerServiceURL=”https://engine.test.surfconext.nl/authentication/sp/
consume-assertion” Destination=”https://mujina-idp.test.surfconext.nl/
SingleSignOnService” ForceAuthn=”true” ID=”A524bd1eb-20b6-4f60-8d83-e56470b77580”
IsPassive=”false” IssueInstant=”2023-12-15T12:42:49.740Z” ProtocolBinding=”urn:oasis
:names:tc:SAML:2.0:bindings:HTTP-POST” Version=”2.0”>

2 <saml2:Issuer xmlns:saml2=”urn:oasis:names:tc:SAML:2.0:assertion”>https://engine.
test.surfconext.nl/authentication/sp/metadata</saml2:Issuer>

3 <ds:Signature xmlns:ds=”http://www.w3.org/2000/09/xmldsig#”>
4 <ds:SignedInfo>
5 <ds:CanonicalizationMethod Algorithm=”http://www.w3.org/2001/10/xml-exc-c14n#”

/>
6 <ds:SignatureMethod Algorithm=”http://www.w3.org/2001/04/xmldsig-more#rsa-

sha512”/>
7 <ds:Reference URI=”#A524bd1eb-20b6-4f60-8d83-e56470b77580”>
8 <ds:Transforms>
9 <ds:Transform Algorithm=”http://www.w3.org/2000/09/xmldsig#enveloped-

signature”/>
10 <ds:Transform Algorithm=”http://www.w3.org/2001/10/xml-exc-c14n#”/>
11 </ds:Transforms>
12 <ds:DigestMethod Algorithm=”http://www.w3.org/2001/04/xmlenc#sha512”/>
13 <ds:DigestValue>...</ds:DigestValue>
14 </ds:Reference>
15 </ds:SignedInfo>
16 <ds:SignatureValue>
17 ...
18 </ds:SignatureValue>
19 <ds:KeyInfo>
20 ...
21 </ds:KeyInfo>
22 </ds:Signature>
23 <saml2p:RequestedAuthnContext>
24 <saml2:AuthnContextClassRef xmlns:saml2=”urn:oasis:names:tc:SAML:2.0:assertion”>

https://refeds.org/profile/mfa</saml2:AuthnContextClassRef>
25 </saml2p:RequestedAuthnContext>
26 </saml2p:AuthnRequest>

Listing 1: Example of a signed SAML authentication request.

For an IdP, it is critical to process only signed document parts [4]. For this purpose, the XML Sig-
nature verification and dereferencing of signed XML parts has to be performed; if an attacker is
able to force the IdP to process unsigned data, they can arbitrarily modify the AuthnRequest
element’s contents.

Weakness. The source code analysis revealed that the tested IdP is vulnerable to XML signature
wrapping attacks. A successful attack is depicted in Listing 2 and works as follows:

1. An attacker executing the attack moves the original signed content to a differ-
ent element. In this case, the whole AuthnRequest element is copied into the
RequestedAuthnContext element (lines 25 - 30). Since the content is not modi-
fied, the XML Signature can still be successfully validated.

2. The attacker then removes the ID of the AuthnRequest root element (line 1); this en-
sures that the AuthnRequest root element is not referenced by the signature and thus
is not integrity protected.

3. The attacker can finally change the content of the AuthnRequest
root element. In this example, the Destination URL is changed to
https://hackmanit.de/SingleSignOnService (line 1).

8

6 Weaknesses

1 <saml2p:AuthnRequest xmlns:saml2p=”urn:oasis:names:tc:SAML:2.0:protocol”
AssertionConsumerServiceURL=”https://engine.test.surfconext.nl/authentication/sp/
consume-assertion” Destination=”https://hackmanit.de/SingleSignOnService” ForceAuthn
=”true” IsPassive=”false” IssueInstant=”2023-12-15T12:42:49.740Z” ProtocolBinding=”
urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST” Version=”2.0”>

2 <saml2:Issuer xmlns:saml2=”urn:oasis:names:tc:SAML:2.0:assertion”>https://engine.
test.surfconext.nl/authentication/sp/metadata</saml2:Issuer>

3 <ds:Signature xmlns:ds=”http://www.w3.org/2000/09/xmldsig#”>
4 <ds:SignedInfo>
5 <ds:CanonicalizationMethod Algorithm=”http://www.w3.org/2001/10/xml-exc-c14n#”

/>
6 <ds:SignatureMethod Algorithm=”http://www.w3.org/2001/04/xmldsig-more#rsa-

sha512”/>
7 <ds:Reference URI=”#A524bd1eb-20b6-4f60-8d83-e56470b77580”>
8 <ds:Transforms>
9 <ds:Transform Algorithm=”http://www.w3.org/2000/09/xmldsig#enveloped-

signature”/>
10 <ds:Transform Algorithm=”http://www.w3.org/2001/10/xml-exc-c14n#”/>
11 </ds:Transforms>
12 <ds:DigestMethod Algorithm=”http://www.w3.org/2001/04/xmlenc#sha512”/>
13 <ds:DigestValue>...</ds:DigestValue>
14 </ds:Reference>
15 </ds:SignedInfo>
16 <ds:SignatureValue>
17 ...
18 </ds:SignatureValue>
19 <ds:KeyInfo>
20 ...
21 </ds:KeyInfo>
22 </ds:Signature>
23 <saml2p:RequestedAuthnContext>
24 <saml2:AuthnContextClassRef xmlns:saml2=”urn:oasis:names:tc:SAML:2.0:assertion”>

https://refeds.org/profile/mfa</saml2:AuthnContextClassRef>
25 <saml2p:AuthnRequest xmlns:saml2p=”urn:oasis:names:tc:SAML:2.0:protocol”

AssertionConsumerServiceURL=”https://engine.test.surfconext.nl/authentication/
sp/consume-assertion” Destination=”https://mujina-idp.test.surfconext.nl/
SingleSignOnService” ForceAuthn=”true” ID=”A524bd1eb-20b6-4f60-8d83-
e56470b77580” IsPassive=”false” IssueInstant=”2023-12-15T12:42:49.740Z”
ProtocolBinding=”urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST” Version=”2.0”
>

26 <saml2:Issuer xmlns:saml2=”urn:oasis:names:tc:SAML:2.0:assertion”>https://
engine.test.surfconext.nl/authentication/sp/metadata</saml2:Issuer>

27 <saml2p:RequestedAuthnContext>
28 <saml2:AuthnContextClassRef xmlns:saml2=”urn:oasis:names:tc:SAML:2.0:

assertion”>https://refeds.org/profile/mfa</saml2:AuthnContextClassRef>
29 </saml2p:RequestedAuthnContext>
30 </saml2p:AuthnRequest>
31 </saml2p:RequestedAuthnContext>
32 </saml2p:AuthnRequest>

Listing 2: Successful XML signature wrapping attack targeting a signed SAML authentication
request.

The IdP processing such message can successfully validate the signature over
the original AuthnRequest element (lines 25 - 30). However, it retrieves the
data from the modified AuthnRequest root element (line 1) and thus processes
https://hackmanit.de/SingleSignOnService as a valid Destination.

Note that, while the XML signature wrapping attack breaks the authenticity and integrity of the
XML Signature, its impact on SAML authentication request messages is rather small; SAML
authentication requests typically only contain data, which are defined in the IdP metadata.
Changing values such asAssertionConsumerServiceURL can be thus detected by other

9

6 Weaknesses

means. Nevertheless, relying on a vulnerable XML Signature validation could introduce unre-
stricted trust in the message contents and result in weaknesses in future deployments.

The evaluated implementation uses theSignatureValidator.validate(signature,
credential) function of the OpenSAML library’s validation logic. However, this function
only verifies the cryptographic correctness of the XML Signature.

To prevent XML signature wrapping attacks, the implementation needs to ensure that the pro-
cessed message contents have been verified in the signature validation step. For this purpose,
OpenSAML offers the SAMLSignatureProfileValidator class with its validate
function. SAMLSignatureProfileValidator evaluates whether the included signature
protects the correct root element and executes further checks preventing XML signature wrap-
ping attacks.

In the scope of the penetration test, we extended the JUnit tests of the openconext-saml-java
library with 12 XML signature wrapping test cases to evaluate this class of attacks directly
during the development.5

Countermeasures. We recommend using the SAMLSignatureProfileValidator class
with its validate function provided by the OpenSAML library to validate XML Signatures.

5https://github.com/OpenConext/openconext-saml-java/pull/1

10

https://github.com/OpenConext/openconext-saml-java/pull/1

7 Recommendations

7 Recommendations

In the following sections, we provide our recommendations to improve the security of the tested
system.

7.1 R01 Improving the Configuration of Security-Related Headers

General Description. There are some HTTP headers that instruct browsers to enable security
mechanisms. These security mechanisms are used to protect against attacks such as clickjack-
ing, cross-site scripting (XSS), or man-in-the-middle (MitM).

The IdP frontend uses the security-related headers X-Frame-Options,
Content-Security-Policy, X-Content-Type-Options, X-XSS-Protection,
and Strict-Transport-Security. An example of the HTTP headers set by the IdP is
depicted in Listing 3.

1 HTTP/1.1 200
2 date: Fri, 15 Dec 2023 10:36:41 GMT
3 server: Apache
4 content-security-policy: default-src ’none’; script-src ’self’ ’unsafe-inline’; style-

src ’self’ ’unsafe-inline’; font-src ’self’; connect-src ’self’ https://connect.test
.surfconext.nl; img-src ’self’ https://static.surfconext.nl data:; form-action ’self
’ https://*.test.surfconext.nl; frame-ancestors ’none’; base-uri ’none’

5 x-frame-options: DENY
6 referrer-policy: same-origin
7 x-content-type-options: nosniff
8 cache-control: no-cache, no-store, max-age=0, must-revalidate
9 pragma: no-cache
10 expires: 0
11 x-content-type-options: nosniff
12 x-xss-protection: 1; mode=block
13 x-frame-options: DENY
14 content-type: text/html;charset=UTF-8
15 set-cookie: HTTPSERVERID=javaapps|ZXwsP; path=/; HttpOnly; Secure; SameSite=None
16 strict-transport-security: max-age=34214400
17 connection: close
18 Content-Length: 15888
19
20 [...]

Listing 3: Example of a response with the HTTP headers set by the IdP.

The configuration of the security-related HTTP headers can be improved by the following ad-
justments:

Content-Security-Policy The content security policy (CSP) used by the IdP contains
the valueunsafe-inline for the directivesscript-src andstyle-src. This pre-
vents the CSP from being an effective countermeasure against attacks such as XSS. The
value unsafe-inline should be removed if possible. An example CSP including more
detailed explanations can be found on the following page: https://cheatsheetseries.owa
sp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html#csp-sample-policies.

X-XSS-Protection The HTTP header X-XSS-Protection can be used to configure
the state of the XSS auditor (Google Chrome) or XSS filter (Internet Explorer). In the

11

https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html#csp-sample-policies
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html#csp-sample-policies

7 Recommendations

past, it was recommended to deliver the HTTP header X-XSS-Protection: 1;
mode=block so that XSS attacks can be blocked in case of detection via an error page.
However, due to cross-site leak (XS-Leak) attacks, it is recommended to disable the XSS
protection mechanism. Browser vendors such as Google no longer deliver a filter or audi-
tor for protection against XSS in new versions.6 We therefore recommend explicitly set-
ting the HTTP header to X-XSS-Protection: 0 to disable the XSS auditor or XSS
filter and thus prevent any possible XS-Leak attacks.

Strict-Transport-Security To extend the protection against MitM attacks, the
value of this header could be extended to Strict-Transport-Security:
max-age=34214400; includeSubDomains.

Server To prevent disclosing information about the software in use, we recommend remov-
ing the Server header. This information could be valuable to attackers and be used for
further attacks.

Duplicate Headers The two headers X-Content-Type-Options and
X-Frame-Options are present twice in the IdP’s responses. It is likely that the
duplicate headers are set by different systems or applications. The duplicate headers
have the same value in the tested case. However, it is possible that different systems use
different values for the headers. This could result in unintended behavior on the receiver
side [3]. We recommend making sure each header is only set by one system.

Recommendation. We recommend adjusting the HTTP header configuration of the IdP as
described above.

6https://www.chromium.org/developers/design-documents/xss-auditor

12

https://www.chromium.org/developers/design-documents/xss-auditor

8 Further Evaluations

8 Further Evaluations

In this section, we list further evaluations we conducted in our penetration test. It provides
useful information for future security evaluations.

XML Parser Configuration. The library defines the configuration of the XML
parser in the getParserBuilderFeatures() function (lines 156-165 in
DefaultSAMLService.java). The configuration was examined for missing security-
related settings. No weaknesses could be identified. Most importantly the processing of
Document Type Definitions (DTDs) is disabled.

Document Type Definition (DTD) / XML External Entity (XXE). As described above the pro-
cessing of DTDs is disabled according to the XML parser configuration. It was practically eval-
uated whether this configuration is effective or if DTDs are processed anyway. During the pen-
etration test it was not possible to make the IdP process DTDs. The tested payloads for XXE
attacks were not successful. The IdP responded with an error message in all tested cases.

XML Injection. It was evaluated whether it was possible to inject XML elements or attributes
into the SAML response or SAML assertion bymanipulating elements or attributes in the SAML
request. For example, quot; hackmanit= quot;XYZ was added at the end of the ID
attribute of the SAML request. The IdP did not decode the XML entities in the injected string
and used the exact same value of theID attribute as the value of theInResponseTo attribute
in the SAML response.

ACS Spoofing. The IdP was evaluated for ACS spoofing attacks. Their goal is to make the IdP
sent the SAML assertion to an attacker-controlled domain instead of the SP. For this purpose,
the attribute AssertionConsumerServiceURL present in the SAML request was re-
placed with different manipulated values. The IdP was not vulnerable to ACS spoofing attacks.
Manipulating the domain or path of the genuine AssertionConsumerServiceURL of the
SP resulted in the IdP rejecting the SAML request with an error message. The same happened
when the whole URL was replaced with an arbitrary one (e.g., https://hackmanit.de),
an invalid value (e.g., null), or when the attribute was removed completely.

Server-Side Request Forgery (SSRF). The SAML request contains URLs in multiple elements
and attributes. When these URLs were replaced with an URL controlled by Hackmanit the IdP
did not invoke the URL. It was not possible to make the IdP access arbitrary URLs.

Manipulations of the RequesterID Elements. The RequesterID elements in the SAML
request were altered or removed. The presence and value of a RequesterID element influ-
ences theAttributeStatement in the SAML response. WhilemostAttribute elements
containing information about the authenticated user are not influences by the RequesterID
elements in the SAML request the attribute called urn:mace:eduid.nl:1.1 contains dif-
ferent values when the RequesterID element in the SAML request differs. According to
SURF this is intended behavior.

Other Manipulations in the SAMLRequest. The SAML request wasmanipulated in other ways
such as manipulating the Issuer element, the Destination or ProtocolBinding at-
tributes, or adding a NameIDPolicy element or IsPassive attribute. None of these ma-
nipulations revealed any weaknesses. In addition, adding a Subject element with a user

13

8 Further Evaluations

identity other than the account used for the subsequent login, did not have any effect on the
issued SAML assertion. The assertion contained the correct identifiers for the identity of the
account logged in during the protocol flow. Except for the Issuer element, the elements and
attributes mentioned above seem to be ignored by the IdP.

RelayState. A new RelayState parameter was added to the request and sent along with
the SAMLRequest. The RelayState was processed and reflected by the IdP. However, it
was not possible to find an exploitable reflection leading to weaknesses.

Node Splitting Attacks. The IdP was examined for its vulnerability to node splitting attacks,
which exploit splitting of validated text nodes after successful XML Signature validation.7 Dif-
ferent variants of these attacks with the help of comments and CDATA sections were tested.
None of the tests was successful.

7https://i.blackhat.com/us-18/Thu-August-9/us-18-Ludwig-Identity-Theft-Attacks-On-SSO-Systems.pdf

14

https://i.blackhat.com/us-18/Thu-August-9/us-18-Ludwig-Identity-Theft-Attacks-On-SSO-Systems.pdf

9 References

9 References

[1] Scott Cantor et al. Assertions and Protocol for the OASIS Security Assertion Markup Lan-
guage (SAML) V2.0. OASIS Standard. Organization for the Advancement of Structured
Information Standards, 2005. url: http://docs.oasis-open.org/security/saml/v2.0/saml-
core-2.0-os.pdf.

[2] Donald Eastlake et al. “XML Signature Syntax and Processing (Second Edition)”. In:W3C
Recommendation (2008).

[3] Hendrik Siewert et al. “On the Security of Parsing Security-Relevant HTTP Headers in
Modern Browsers”. In: 2022 IEEE Security and PrivacyWorkshops (SPW). 2022, pp. 342–
352. doi: 10.1109/SPW54247.2022.9833880.

[4] Juraj Somorovsky et al. “OnBreaking SAML: BeWhoever YouWant to Be”. In:21st USENIX
Security Symposium. Bellevue, WA, Aug. 2012.

15

http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://doi.org/10.1109/SPW54247.2022.9833880

	Summary
	Project Timeline
	Methodology
	General Conditions and Scope
	Overview of Weaknesses, Recommendations, and Information
	Weaknesses
	M01 XML Signature Wrapping Attack Targeting Signed Authentication Requests

	Recommendations
	R01 Improving the Configuration of Security-Related Headers

	Further Evaluations
	References

