
Penetration Test Report:
DENIC ID
Version: 1.2.1
19.01.2024

Dr.-Ing. Juraj Somorovsky
Phone: (+49)(0)234 / 45930961 | E-Mail: juraj.somorovsky@hackmanit.de

https://hackmanit.de/

Project Information

Customer: DENIC eG
Kaiserstraße 75 - 77
60329 Frankfurt am Main, Deutschland

Contact: Marcos Sanz

Commissioned to: Hackmanit GmbH
Universitätsstraße 60 (Exzenterhaus)
44789 Bochum, Germany

Project executive: Dr.-Ing. Juraj Somorovsky
Phone: (+49)(0)234 / 45930961
Fax: (+49)(0)234 / 45930960
E-Mail: juraj.somorovsky@hackmanit.de

Project members: Karsten Meyer zu Selhausen (Hackmanit GmbH)
Dr.-Ing. Vladislav Mladenov (Hackmanit GmbH)
Mario Korth (Hackmanit GmbH)

Project period: 11.03.2019 – 19.03.2019

Version of the report: 1.2.1

This report was technically verified by Dr.-Ing. Vladislav Mladenov.
This report was linguistically verified by David Herring.

Hackmanit GmbH
Represented by: Prof. Dr. Jörg Schwenk, Prof. Dr. Juraj Somorovsky,
Dr. Christian Mainka, Prof. Dr. Marcus Niemietz
Register court: Amtsgericht Bochum, HRB 14896, Germany

1

https://hackmanit.de/
https://hackmanit.de/
https://hackmanit.de/
https://hackmanit.de/
https://hackmanit.de

Contents

Contents

1 Summary 4

2 Project Timeline 5

3 Methodology 5

4 General Conditions and Scope 6

5 Scenario Description 7

6 Overview of Weaknesses, Recommendations, and Information 11

7 Weaknesses 15
7.1 H01 Signature Exclusion at the Identity Agent 15
7.2 M01 Insufficient Clickjacking Protections . 16
7.3 M02 User Enumeration . 17
7.4 M03 Missing Binding Between HTTP Parameter sessionID and Session

Cookies . 17
7.5 M04 Insufficient Cross-site Request Forgery Protection 19
7.6 M05 Faulty Session Management . 20
7.7 M06 Identity Authority Allows HTTP Redirect URIs 21
7.8 L01 Missing Brute Force Protections . 22
7.9 L02 Denial-of-Service Attack at the Identity Agent 22

8 Recommendations 24
8.1 R01 Issue a NewAccess Token to Access the Identity Agent at Userinfo End-

point . 24
8.2 R02 Implement Access Tokens as One-Time-Use Tokens at Identity Agent . 24
8.3 R03 Revoke Authorization Code When It Is Redeemed Using False Client

Credentials . 25
8.4 R04 Revoke Tokens If the Related Authorization Code Is Redeemed a Second

Time . 25
8.5 R05 Revoke Tokens When the User Changes his Password 25
8.6 R06 Implement Refresh Tokens as One-Time-Use Tokens 26
8.7 R07 Revoke Tokens When a Refresh Token Is Redeemed a Second Time . . 26
8.8 R08 Prevent Concurrent Logins . 26
8.9 R09 Secure Cookies with HttpOnly Flag . 27
8.10 R10 Secure Cookies with Secure Flag . 27
8.11 R11 Enforce HTTP Stricts Transport Security 27
8.12 R12 Restrict Cross-Origin Resource Sharing to Whitelist 28
8.13 R13 Enable Content Security Policy . 28
8.14 R14 Set XSS Protection HTTP Header . 28
8.15 R15 Disable Referer HTTP Header . 28
8.16 R16 Disable Content Type Sniffing . 29

2

Contents

8.17 R17 Set Cache Control HTTP Headers . 29
8.18 R18 Use Discovery Mechanism at Identity Agent 29

9 Information 30
9.1 I01 Information Disclosure on the Consent Page 30

10 Further Evaluations 32
10.1 OpenID Connect Parameters . 32
10.2 Authorization Code . 32
10.3 Access Token . 33
10.4 Refresh Token . 33
10.5 Client Registration Endpoint . 34
10.6 End Session Endpoint . 35
10.7 Introspection Endpoint . 35
10.8 Revocation Endpoint . 35
10.9 Token Endpoint . 36
10.10 Userinfo Endpoints . 37
10.11 Updating Stored Claims . 38
10.12 Open Redirects . 39
10.13 Cross-site Scripting . 39
10.14 XML-based Attacks . 39
10.15 TLS Configuration . 39

11 References 44

3

1 Summary

1 Summary

DENIC ID is the first widely-deployed implementation of the ID4me protocol [1]. ID4me is a
novel protocol for federated identity management, of which the two main goals are to provide
(1) Authorization of a user for access to any third party accepting ID4me identifiers and (2) Con-
trolled communication of the user’s personal information to the third parties accessed by the
user [1]. ID4me is based on well-established standards such as OpenID Connect (OIDC) [12]
and domain name system (DNS) [4].

Hackmanit GmbH was commissioned to perform a penetration test of DENIC ID. After an ini-
tial kick-off meeting at the office of DENIC eG in Frankfurt am Main, the penetration test was
performed remotely with a total expense of 11 man-days.

Weaknesses. During the penetration test, one weakness classified as High and five weak-
nesses classified as Medium were identified. The highest ranked weakness targeted the iden-
tity agent. Instead of enforcing that the access token (which is a JWT) contains a signature from
the identity authority, the identity agent accepted access tokens which do not contain any sig-
nature at all. This allowed an attacker to craft his own access tokens and use them to access
the stored personal information of arbitrary users. Another mentionable weakness, which was
identified at the identity authority, allowed an attacker to log a victim into his account. Depend-
ing on the service provided by the relying party this might result in the victim revealing personal
information or files to the attacker.

Both weaknesses described above were already fixed by updates of the identity authority and
identity agent during the penetration test. According to DENIC, all remaining weaknesses clas-
sified as Medium were fixed by the end of June. In our retests, we tested and successfully
verified the correctness of three countermeasures (H01 , M03 , and M05).

Additionally, we strongly recommend fixing the weaknesses classified as Low and Information
as well as to implement the recommendations given in Section 8 to improve the overall security
of the tested systems.

Top Weaknesses:
Risk Level Finding Reference

H01 Signature Exclusion at the Identity Agent Section 7.1, page 15

Structure. The report is structured as follows: In Section 2, the timeline of the penetration test
is listed. Section 3 introduces our methodology and Section 4 explains the general conditions
and scope of the penetration test. Section 6 provides an overview of the identifiedweaknesses,
as well as, further recommendations and information. In Section 7, all identified weaknesses
are discussed in detail and specific countermeasures are described. Section 8 summarizes our
recommendations resulting from observations of the application. In Section 9, observations
of unusual configurations and possibly unwanted behavior of the application are described.
Finally, Section 10 lists additional tests that did not reveal any weaknesses.

4

https://hackmanit.de/

3 Methodology

2 Project Timeline

The penetration test was performed between the 11.03.2019 and 19.03.2019 remotely after
an initial kick-off meeting in Frankfurt am Main on 11.03.2019. Four penetration testers with
different technical backgrounds were involved with a total expense of 11 man-days.

Additionally, weakness M05 was reevaluted during a retest on 07.06.2019.

3 Methodology

Among others, the following tools were used for the penetration test:

Tool Link
Mozilla Firefox https://www.mozilla.org/de/firefox/
Google Chrome https://www.google.com/intl/de_ALL/chrome/
Burp Suite Professional https://portswigger.net/burp
testssl.sh https://testssl.sh/
TLS-Attacker https://github.com/RUB-NDS/TLS-Attacker
TLS-Scanner https://github.com/RUB-NDS/TLS-Scanner
Self-developed tools -

Risk Rating. Each weakness has its own CVSS 3.1 base score rating (Common Vulnerability
Scoring System Version 3.1 Calculator).1,2 Based on the CVSS 3.1 base score, the following
weaknesses assessment is performed:

0.0 – 3.9: Low
4.0 – 6.9: Medium
7.0 – 8.9: High
9.0 – 10.0: Critical

1https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
2https://www.first.org/cvss/v3.1/user-guide

5

https://www.mozilla.org/de/firefox/
https://www.google.com/intl/de_ALL/chrome/
https://portswigger.net/burp
https://testssl.sh/
https://github.com/RUB-NDS/TLS-Attacker
https://github.com/RUB-NDS/TLS-Scanner
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://www.first.org/cvss/v3.1/user-guide

4 General Conditions and Scope

4 General Conditions and Scope

The scope of the black-box penetration test included the ID4me implementation of DENIC,
DENIC ID, as well as the userinfo endpoint of the identity agent. Therefore, the test covered
the following endpoints:

• Authorization endpoint: id.test.denic.de/login

• Token endpoint: id.test.denic.de/token

• Client registration endpoint: id.test.denic.de/clients

• Introspection endpoint: id.test.denic.de/token/introspect

• Revocation endpoint: id.test.denic.de/token/revoke

• Userinfo endpoints: id.test.denic.de/userinfo, api-beta.id4me.ionos
.com/userinfo

• End session endpoint: id.test.denic.de/logout

Additionally, two web front ends were in the scope of the penetration test: the dashboard
at the identity authority, and the front end for the user login and claims confirmation at the
authorization endpoint. Therefore, in addition to the endpoints above, the following uniform
resource l6ocators (URLs) were in the scope of the penetration test:

• https://id.test.denic.de/

• https://id.test.denic.de/authenticate

• https://id.test.denic.de/consent

• https://id.test.denic.de/dashboard/*

The dashboardURL provides several additional functions, for example, login, logout, account
activation, or management of identities.

This resulted in the following cookies being within the scope of the penetration test:

• sub_sid_current

• sub_sid_XXX

• SESSIONID

6

5 Scenario Description

5 Scenario Description

DENIC ID is an implementation of ID4me [1] – an “Open, Global, Federated Standard For The
Digital Identity Management”.3 It is based on established standards such as OIDC and DNS.
In contrast to other single sign-on (SSO) schemes, ID4me divides the duties of the identity
provider (IdP) into two separated entities: an identity agent and an identity authority. The
identity agent provides registration services and manages user data. The identity authority is
responsible for user authentication and authorization. This role separation results in the fol-
lowing four entities being involved in a login process based on ID4me:

User A user utilizing ID4me to log in at an online service. His user account is associated with
an ID4me identifier.

Relying party An online service which supports logins using an ID4me identifier.

Identity agent The entity providing ID4me services to the user. This includes the registration
and management of ID4me identifiers as well as storage and distribution of the user’s
personal data to relying partys in so-called “claims”.

Identity authority The entity responsible for user authentication and for ensuring that the user
authorized the specific relying party to access his personal information.

ID4me identifiers are used to identify the user when he/she wants to log in at a relying party.
An ID4me identifier can be any hostname identified by a valid DNS entry which contains a TXT
record. This record specifies the responsible identity authority and identity agent.

The process of registering a new ID4me identifier was not in the scope of this penetration
test. Therefore, it is not described here. Information on the process can be found in the ID4me
documentation [1].

Figure 1: Process of logging in at a relying party using an ID4me identifier. The figure is taken
from the official ID4me documentation.4

3https://id4me.org/about/

7

https://id4me.org/about/

5 Scenario Description

The process of logging in at a relying party using an ID4me identifier is depicted in Figure 1
and described as follows:

1. The user starts the login process with the relying party by providing his ID4me identifier.

2. The relying party queries the DNS for the user’s identifier to acquire the responsible iden-
tity authority and identity agent.

3. If the relying party is not already registered at the identity authority, it performs Dynamic
Client Registration [11] according to the OIDC standard.

4. The relying party redirects the user to the identity authority. The user authenticates at the
identity authority and authorizes or rejects access to the claims requested by the relying
party on the consent page displayed by the identity authority.

5. The identity authority redirects the user back to the relying party and delivers the au-
thorization code to the relying party in this redirection. The relying party redeems the
authorization code at the token endpoint of the identity authority and receives an access
token. Listing 1 provides an example of an access token.

6. If the relying party wants to access claims in addition to the information present in the
access token, it queries the userinfo endpoint of the identity authority using the access
token. The identity authority makes use of the OIDC distributed claims mechanism5 and
refers the relying party to the identity agent. The relying party queries the userinfo end-
point of the identity agent using the access token.

7. If the access token is valid, the identity agent provides all claims which the relying party
is authorized to access according to the clm field of the access token. If there is no
information stored for a requested claim, the claim is omitted from the identity agent’s
response.

4https://gitlab.com/ID4me/documentation/blob/1a8e464b42ef6f57e75ec3c7f1a23e878dbbe42d/id4me%20Tec
hnical%20Overview%20v1.3.pdf

5https://openid.net/specs/openid-connect-core-1_0.html#AggregatedDistributedClaims

8

https://gitlab.com/ID4me/documentation/blob/1a8e464b42ef6f57e75ec3c7f1a23e878dbbe42d/id4me%20Technical%20Overview%20v1.3.pdf
https://gitlab.com/ID4me/documentation/blob/1a8e464b42ef6f57e75ec3c7f1a23e878dbbe42d/id4me%20Technical%20Overview%20v1.3.pdf
https://openid.net/specs/openid-connect-core-1_0.html#AggregatedDistributedClaims

5 Scenario Description

1 {
2 ”kid”: ”FOvy”,
3 ”alg”: ”RS256”
4 }.
5 {
6 ”sub”: ”Dvkf7Oy9SEqVgt+hPwY7K3mjInrC91L318KVwtsbfakhhNwqc7Thx0VRiPpj2RS7”,
7 ”id4me.identifier”: ”pentest.sanz.club”,
8 ”identifier”: ”pentest.sanz.club”,
9 ”id4me”: ”pentest.sanz.club”,
10 ”clm”: [
11 ”email”,
12 ”email_verified”,
13 ”preferred_username”,
14 ”name”,
15 ”nickname”
16],
17 ”scope”: [
18 ”openid”
19],
20 ”iss”: ”https:\/\/id.test.denic.de”,
21 ”exp”: 1552397804,
22 ”iat”: 1552397204,
23 ”jti”: ”_E16kF4MmwU”,
24 ”client_id”: ”sfa4ztr427bsm”
25 }.
26 *Signature*

Listing 1: Access token issued and signed by the identity authority (decoded).

While generally implementing ID4me, DENIC ID differs from the standard in some crucial as-
pects. ID4me does not cover the trust relationship between the identity agent and the identity
authority; in ID4me every user is allowed to set up and operate his own identity agent. DENIC
ID is more specific in this regard and only supports pre-registered identity agents which have
a valid contract with the DENIC. Additionally, DENIC ID suggests that a relying party does not
trust every identity authority but only a list of predefined authorities. This limits the degrees of
freedom provided by ID4me but increases the security by limiting the parties which can partic-
ipate in the protocol and establishes more trust between these parties.

For the penetration test, DENIC provided us with access to their DENIC ID test environ-
ment. This included access to their identity authority (id.test.denic.de) which consists
of two components: the dashboard (/dashboard) and the OIDC endpoints, and an iden-
tity agent (beta.id4me.ionos.de) and a relying party (hermes.open-xchange.com).
The identity authority provides the following endpoints:

• Authorization endpoint: /login

• Token endpoint: /token

• Client registration endpoint: /clients

• Introspection endpoint: /token/introspect

• Revocation endpoint: /token/revoke

• Userinfo endpoint: /userinfo

• End session endpoint: /logout

9

5 Scenario Description

The complete configuration of the tested identity authority, including the locations of all relevant
endpoints, can be found at https://id.test.denic.de/.well-known/openid-configuration.

We were also provided with the following two identifiers already registered in the test envi-
ronment:

Identifier Password sub Claim

pentest.sanz.club asdfasdf Dvkf7Oy9SEqVgt+hPwY7K3mjInrC91L318KVwtsbfak
hhNwqc7Thx0VRiPpj2RS7

pentest2.sanz.club asdfasdf +V95/459p4c0kvXAOlk2qCALizOEA+DK6e9sjJYVh4
Q+2Fp9OgoZSrxek+Zg8RZY

10

https://id.test.denic.de/.well-known/openid-configuration

6 Overview of Weaknesses, Recommendations, and Information

6 Overview of Weaknesses, Recommendations, and Information

Risk Level Finding Reference

H01 Signature Exclusion at the Identity Agent: The iden-
tity agent does not enforce the use of a signed JWT.
It accepts JWTs with missing signatures.

Section 7.1, page 15

M01 Insufficient Clickjacking Protections: The iden-
tity authority does not employ sufficient protections
against Clickjacking attacks.

Section 7.2, page 16

M02 User Enumeration: The login process of the dash-
board at the identity authority does not prevent user
enumeration.

Section 7.3, page 17

M03 Missing Binding Between HTTP Parameter
sessionID and Session Cookies: The identity
authority makes use of different values to reference
the session of the user in the current authorization
flow but does not bind these values to each other.

Section 7.4, page 17

M04 Insufficient Cross-site Request Forgery Protection:
The identity authority does not provide sufficient pro-
tection against CSRF attacks.

Section 7.5, page 19

M05 Faulty Session Management: User sessions are not
invalidated upon logout on the identity authority.

Section 7.6, page 20

M06 Identity Authority Allows HTTP Redirect URIs: The
identity authority allows “web” clients to register
redirect URIs which use the HTTP scheme instead of
enforcing the use of HTTPS.

Section 7.7, page 21

L01 Missing Brute Force Protections: The identity au-
thority does not enforce any protection mechanisms
against brute force attacks, allowing an attacker to try
to guess user’s passwords.

Section 7.8, page 22

L02 Denial-of-Service Attack at the Identity Agent: The
identity agent attempts to download the complete
JWKS file, independently of its size and structure.

Section 7.9, page 22

11

6 Overview of Weaknesses, Recommendations, and Information

R01 Issue a New Access Token to Access the Identity
Agent at Userinfo Endpoint: The identity authority
should issue a new access token in order to access
the identity agent at its userinfo endpoint.

Section 8.1, page 24

R02 Implement Access Tokens as One-Time-Use To-
kens at Identity Agent: The identity agent should ac-
cept an access token only once in order to access its
userinfo endpoint.

Section 8.2, page 24

R03 Revoke Authorization Code When It Is Redeemed
Using False Client Credentials: The authorization
code should be revoked when a token request is re-
ceived using false client credentials.

Section 8.3, page 25

R04 Revoke Tokens If the Related Authorization Code
Is Redeemed a Second Time: All relevant tokens
should be revoked if the token endpoint receives an
already redeemed authorization code.

Section 8.4, page 25

R05 Revoke Tokens When the User Changes his Pass-
word: All tokens issued for one user should be re-
voked when he/she changes his/her password at the
identity authority.

Section 8.5, page 25

R06 Implement Refresh Tokens as One-Time-Use To-
kens: Refresh Tokens should be invalidated when
they are redeemed at the token endpoint of the iden-
tity authority.

Section 8.6, page 26

R07 Revoke TokensWhen a Refresh Token Is Redeemed
aSecond Time: All relevant tokens should be revoked
if the token endpoint receives an already redeemed
refresh token.

Section 8.7, page 26

R08 Prevent Concurrent Logins: The authorization end-
point should prevent concurrent logins.

Section 8.8, page 26

R09 Secure Cookies with HttpOnly Flag: Ses-
sion cookies should be protected by setting the
HttpOnly flag.

Section 8.9, page 27

R10 Secure Cookies with Secure Flag: Cookies should
be protected by setting the secure flag.

Section 8.10,
page 27

12

6 Overview of Weaknesses, Recommendations, and Information

R11 Enforce HTTP Stricts Transport Security: Servers
should enforce the usage of HTTPSwith theStrict
-Transport-Security HTTP header.

Section 8.11,
page 27

R12 Restrict Cross-Origin Resource Sharing to
Whitelist: CORS should be restricted to a whitelist
of allowed origins at the userinfo endpoint.

Section 8.12,
page 28

R13 Enable Content Security Policy: The Content Secu-
rity Policy should be enabled to increase the applica-
tion security.

Section 8.13,
page 28

R14 Set XSS Protection HTTP Header: The X-XSS-
Protection HTTP header should be set with the
appropriate mode to increase the protection against
XSS attacks.

Section 8.14,
page 28

R15 Disable Referer HTTP Header: The Referer header
should be disabled to prevent potential information
leakage.

Section 8.15,
page 28

R16 Disable Content Type Sniffing: The X-Content-
Type-Options HTTP header should be set to pre-
vent content type sniffing.

Section 8.16,
page 29

R17 Set Cache Control HTTP Headers: Appropriate
cache control HTTP headers should be set to prevent
client-side caching.

Section 8.17,
page 29

R18 Use Discovery Mechanism at Identity Agent: The
identity agent should use the discovery mechanism
to determine the URL of the JWKS file of the identity
authority.

Section 8.18,
page 29

I01 Information Disclosure on the Consent Page: The
identity authority displays a stacktrace on the consent
page when the prompt parameter of the authoriza-
tion request is set to “select_account”.

Section 9.1, page 30

13

6 Overview of Weaknesses, Recommendations, and Information

Risk Definitions:

Critical Risk Weaknesses classified as Critical can be exploited with very little
effort by an attacker. They have very large negative effects on the
tested system, its users and data, or the system environment.

High Risk Weaknesses classified as High can be exploited with little effort
by an attacker. They have a major negative impact on the tested
system, its users and data, or the system environment.

Medium Risk Weaknesses classified as Medium can be exploited with medium
effort by an attacker. They have a medium negative impact on the
tested system, its users and data, or the system environment.

Low Risk Weaknesses classified as Low can only be exploited with great ef-
fort by an attacker. They have little negative impact on the tested
system, its users and data, or the system environment.

Recommendation Recommendation identifies measures that may increase the secu-
rity of the tested system. Implementation is recommended, but not
necessarily required.

Information Observations classified as Information are usually no weaknesses.
Examples of these observations are unusual configurations and
possibly unwanted behavior of the tested system.

14

7 Weaknesses

7 Weaknesses

In the following sections, we list the identified weaknesses. Every weakness has an identifica-
tion name which can be used as a reference in the event of questions, or during the patching
phase.

7.1 H01 Signature Exclusion at the Identity Agent

Exploitability Metrics Impact Metrics
Attack Vector (AV) Network Confidentiality Impact (C) High
Attack Complexity (AC) Low Integrity Impact (I) None
Privileges Required (PR) None Availability Impact (A) None
User Interaction (UI) None Scope (S) Unchanged
Subscore: 3.9 Subscore: 3.6

Overall CVSS Score for H01 : 7.5

General Description. The userinfo endpoint of the identity agent can be used to access the
information about a user stored at the identity agent. In order to access this information, the
request must contain an access token in the Authorization HTTP header. This access to-
ken is a JSONweb token (JWT) issued and validly signed by the identity authority. The identity
agent verifies the signature of the JWT and rejects requests containing invalid signatures.

Weakness. The identity agent is vulnerable to Signature Exclusion attacks as it processes re-
quests with missing JWT signatures. This allows an attacker to access arbitrary user data at
the userinfo endpoint of the identity agent usingmanipulated JWTs. The identity agent accepts
these manipulated JWTs and delivers information about the user specified by the combination
of the iss and sub values if available.

The attacker is able to craft access tokens on their own and use them to access the stored infor-
mation of arbitrary users, as long as the attacker knows the sub values for the corresponding
users at the identity authority. The attacker can either use a valid old access token, remove the
signature, and adjust the sub value and update the timestamps, or build their own access to-
ken from scratch. An example of an access token (Base64Url-encoded) which does not contain
a signature but is still accepted by the identity agent is given in Listing 2.

1 eyJraWQiOiJGT3Z5IiwiYWxnIjoiTm9uZSJ9.eyJzdWIiOiIrVjk1XC80NTlwNGMwa3ZYQU9sazJxQ0
FMaXpPRUErREs2ZTlzakpZVmg0USsyRnA5T2dvWlNyeGVrK1pnOFJaWSIsImlkNG1lLmlkZW50
aWZpZXIiOiJwZW50ZXN0Mi5zYW56LmNsdWIiLCJpZGVudGlmaWVyIjoicGVudGVzdDIuc2Fuei5
jbHViIiwiaWQ0bWUiOiJwZW50ZXN0Mi5zYW56LmNsdWIiLCJjbG0iOlsibmFtZSIsImdpdmVuX25
hbWUiLCJmYW1pbHlfbmFtZSIsImVtYWlsIl0sInNjb3BlIjpbIm9wZW5pZCJdLCJpc3MiOiJodHRwczpcL1
wvaWQudGVzdC5kZW5pYy5kZSIsImV4cCI6MTU1MjQ4NDk3NywiaWF0IjoxNTUyNDg0Mzc3LCJqdGkiOiJFQ3
hRY21LZEJJNCIsImNsaWVudF9pZCI6InZ5Z3ZxbXdvMmNvbzIifQ.

Listing 2: JWT without a signature used as an access token to access user information at the
identity agent (encoded). The signature header algorithm is set to none.

15

7 Weaknesses

Note that the attack works independently of the used signature algorithm. The JWT header
can either contain the none algorithm or the RS256 algorithm. Therefore, this issue is not a
mere configuration flaw, and blacklisting the none algorithmwould not prevent the attack. The
implementation needs to be updated so that the presence of the signature is always verified.

Countermeasures. We strongly recommend enforcing that all access tokens be signed by the
issuing identity authority using one of the algorithms specified by RFC7518 (JSONWeb Algo-
rithms (JWA)) [2, Section 3.1], except the none algorithm. Any request containing an access
token without a signature, specifying the usage of the none algorithm, or with an invalid sig-
nature must be rejected. In all three cases the response should be a general error message,
e.g.: Missing or invalid signature!

Retest. An update of the identity agent was applied during the penetration test. We can
confirm that this weakness has been successfully fixed. The identity agent rejects any request
containing an access tokenwithout a signature, or a header specifying thenone algorithm.

7.2 M01 Insufficient Clickjacking Protections

Exploitability Metrics Impact Metrics
Attack Vector (AV) Network Confidentiality Impact (C) High
Attack Complexity (AC) Low Integrity Impact (I) None
Privileges Required (PR) None Availability Impact (A) None
User Interaction (UI) Required Scope (S) Unchanged
Subscore: 2.8 Subscore: 3.6

Overall CVSS Score for M01 : 6.5

General Description. Clickjacking allows an attacker to trick the user into performing clicks, and
therefore, actions the user did not intend to perform [5]. To prevent this kind of attack, several
security mechanisms exist, such as framebuster, the X-Frame-Options HTTP header, and
the Content Security Policy (CSP) option frame-ancestors.

Weakness. The identity authority does not employ any of the securitymechanisms listed above.
Therefore, an attacker could use Clickjacking attacks to trick the victim into performing arbitrary
actions. For example, the victim can be tricked into consenting to arbitrary claims.

Countermeasures. We recommend to employ all the security mechanisms listed above. The
reason for this is that older browsers may not support the CSP or the X-Frame-Options
HTTP header. Therefore, framebuster techniques should be used in addition to these features
in order to mitigate Clickjacking attacks. More details are provided in the OWASP Clickjacking
Defense Cheat Sheet [6].

16

7 Weaknesses

7.3 M02 User Enumeration

Exploitability Metrics Impact Metrics
Attack Vector (AV) Network Confidentiality Impact (C) Low
Attack Complexity (AC) Low Integrity Impact (I) None
Privileges Required (PR) None Availability Impact (A) None
User Interaction (UI) None Scope (S) Unchanged
Subscore: 3.9 Subscore: 1.4

Overall CVSS Score for M02 : 5.3

General Description. Different behavior in the case of existing and non-existing usernames
(i.e., the user identifier) allows an attacker to enumerate which accounts exist. This information
can be used for further attacks, such as guessing passwords online.

Weakness. The login process of the identity authority dashboard first requires the user to enter
his identifier. If the identifier exists, the dashboard asks the user for his password. Otherwise,
if the identifier does not exist, an error message is displayed. This behavior can be used to
determine if an identifier exists at the identity authority.6

Countermeasures. We recommend to adjust the behavior of the identity authority such that it
behaves in the same way in case of an existing and a non-existing identifier. Additionally, we
recommend displaying CAPTCHAs after a certain number of identifiers (e.g., five) was entered
in the login form. This prevents automated user enumeration.

7.4 M03 Missing Binding Between HTTP Parameter sessionID and Session
Cookies

Exploitability Metrics Impact Metrics
Attack Vector (AV) Network Confidentiality Impact (C) Low
Attack Complexity (AC) Low Integrity Impact (I) Low
Privileges Required (PR) Low Availability Impact (A) None
User Interaction (UI) Required Scope (S) Unchanged
Subscore: 2.1 Subscore: 2.5

Overall CVSS Score for M03 : 4.6

General Description. During the authorization flow, the identity authority presents a consent
page to the user to let him decide whether he grants the requesting client access to his infor-
mation or not. This page contains a hidden form field called sessionID. The value of this
form field is used to reference the current authorization flow and prevent Cross-site Request
6Due to the design of ID4me a discovery mechanism is necessary. This mechanism is vulnerable to user enumer-
ation in general, as it allows an attacker to determine whether an identifier exists by querying the responsible
DNS server. As DNS servers are not in the scope of this penetration test, we cannot consider the existence of a
user enumeration weakness using DNS queries when rating this weakness.

17

7 Weaknesses

Forgery (CSRF) attacks. The session of the user currently logged in at the identity authority is
referenced by the session cookies sub_sid_current and sub_sid_XXX.

Weakness. The values of sessionID and these session cookies are not bound to each other.
This allows an attacker to bypass the CSRF protection of the sessionID value; see M04 for
details on the insufficient CSRF protection of the application.

Additionally, the identity authority uses both the value of the sub_sid_XXX session cookie
and value of the sessionID to determine which information should be stored in the access
token issued at the end of an authorization flow.

The combination of this incorrect behavior and the missing binding between the value of
sessionID and the session cookies results in the following CSRF attack which allows an
attacker to log in a victim into his/her account:

1. An attacker starts an authorization flowand uses his account at the identity authority (e.g.,
“pentest.sanz.club”) to log in. When the identity authority displays the consent page he
does not proceed with the flow but extracts the received sessionID parameter.

2. He lures the victim to start a second authorization flow and, if not already logged in, to
log in into its account (e.g., “pentest2.sanz.club”) at the identity authority.

3. The attacker replaces the value of sessionID in the second authorization flowwith the
value obtained from his first authorization flow and makes the victim confirm the consent
page using a CSRF attack.

4. The identity authority creates an authorization code and delivers it to the relying party
using the victim’s user agent (UA). The relying party redeems the authorization code at
the token endpoint of the identity authority and receives an access token.

The access token received by the relying party contains a mismatch between the sub and
id4me.identifier fields. A decoded example of such an access token is given in List-
ing 3. While the field id4me.identifier references the user account of the victim (“pen-
test2.sanz.club”) thesub field’s value belongs to the attacker’s account. Thismeans the identity
authority uses the value of the sub_sid_XXX session cookie to determine the value of the id
4me.identifier field and the value of the sessionID to determine the value of the sub
field.

In the tested scenario, the identity agent behaves correctly and uses the combination of theiss
and sub fields to identify a user account when its userinfo endpoint is called. Therefore, the
attack described above results in the victim being logged in the attacker’s account at the relying
party. The victimmight not recognize it is logged in an account different from its own, and uses
the services provided by the relying party as it usually would. Depending on these services, the
impact of the attack differs. For example, the relying party could provide an upload function
for personal files and documents. The victim would upload its private files to the attacker’s
account, allowing him to access them later.

Countermeasures. We recommend binding the sessionID value to user’s current session at
the identity authority. The session is referenced by the session cookies sub_sid_current
and sub_sid_XXX. Every request with inconsistent values should be rejected. This prevents
the attack described above and enables sessionID to serve as an effective CSRF protection.
Additionally, we recommend not using the value ofsessionID to identify the currently logged

18

7 Weaknesses

in user. Instead, the value should only reference the current authorization flow and the logged
in user should only be identified by the session cookies sub_sid_current and sub_sid
_XXX. All user-specific information contained in the access token should only depend on the
user identified by session cookies as a way to prevent mismatching information in the access
token.

Retest. An update of the identity authority was applied during the penetration test. We can
confirm that this weakness has been successfully fixed. The identity authority binds the value
of sessionID to the session cookies sub_sid_current and sub_sid_XXX. If the re-
quest confirming the consent page contains a sessionID which does not match the user
associated with the session cookies sub_sid_current and sub_sid_XXX, the identity
authority rejects the request and does not issue any authorization code.

1 {
2 ”sub”: ”Dvkf7Oy9SEqVgt+hPwY7K3mjInrC91L318KVwtsbfakhhNwqc7Thx0VRiPpj2RS7”,
3 ”id4me.identifier”: ”pentest2.sanz.club”,
4 ”identifier”: ”pentest2.sanz.club”,
5 ”id4me”: ”pentest2.sanz.club”,
6 ”clm”: [
7 ”name”,
8 ”given_name”,
9 ”family_name”,
10 ”email”
11],
12 ”scope”: [
13 ”openid”
14],
15 ”iss”: ”https://id.test.denic.de”,
16 ”exp”: 1552480414,
17 ”iat”: 1552479814,
18 ”jti”: ”eop0u3L2OVE”,
19 ”client_id”: ”vygvqmwo2coo2”
20 }

Listing 3: An example body of an access tokenwhichwas issued by the identity authority when
the attack described above is executed (decoded). The value of the sub field belongs
to a different user account (pentest.club.sanz) than the one specified by the id4me
.identifier.

7.5 M04 Insufficient Cross-site Request Forgery Protection

Exploitability Metrics Impact Metrics
Attack Vector (AV) Network Confidentiality Impact (C) Low
Attack Complexity (AC) Low Integrity Impact (I) None
Privileges Required (PR) None Availability Impact (A) None
User Interaction (UI) Required Scope (S) Unchanged
Subscore: 2.8 Subscore: 1.4

Overall CVSS Score for M04 : 4.3

19

7 Weaknesses

General Description. Cross-site Request Forgery (CSRF) is an attack in which an attacker
tricks his victim into performing authenticated commands that changes the application state [7].
The attack is possible since browsers automatically attach cookies to every application HTTP
request, regardless of the request origin. Therefore, it’s impossible for the server application to
distinguish between a valid user-initiated request and an invalid requestwhichwas not initiated
with the user’s consent.

Weakness. The dashboard of the identity authority does not apply any CSRF protection. For
instance, an attacker could abuse this to disable the victim’s account at the identity authority.
Additionally, the CSRF protection mechanism present on the authorization endpoint is flawed,
as the sessionID is not bound to the session cookies sub_sid_current and sub_sid
_XXX. This allows an attacker to bypass the CSRF protection using a sessionID obtained
with his own account. Details for this weakness can be found in M03 .

Countermeasures.We recommend adding CSRF protection to all parts of the identity authority
which allow to execute crucial actions. We also recommend binding the value of sessionID
to the user’s current session at the identity authority, which is referenced by the session cookies
sub_sid_current and sub_sid_XXX, and reject every request which contains values not
bound to each other. This enables sessionID to serve as an effective CSRF protection and
prevents the attack described in M03 .

Additionally, adding the SameSite flag to cookies should be considered, where applicable. In
the strictmode, SameSite cookies are only sent if the request’s origin is the website itself. In
the lax mode, SameSite cookies are also sent if the user follows a regular link.

7.6 M05 Faulty Session Management

Exploitability Metrics Impact Metrics
Attack Vector (AV) Physical Confidentiality Impact (C) High
Attack Complexity (AC) Low Integrity Impact (I) None
Privileges Required (PR) None Availability Impact (A) None
User Interaction (UI) Required Scope (S) Unchanged
Subscore: 0.7 Subscore: 3.6

Overall CVSS Score for M05 : 4.3

General Description. Proper session management requires that sessions are invalidated upon
logout. OWASP states that “if a session can still be used after logging out then the lifetime of
the session is increased and that gives third parties thatmay have intercepted the session token
more (or perhaps infinite, if no absolute session expiry happens) time to impersonate a user.”7
Users might want to log out at the identity authority for different reasons and should be able
to terminate their sessions. One of the more obvious reasons is the use of public computers on
which users might not use the private mode. Being unable to log out increases the risk that the
user’s session is compromised and an attacker takes over the user’s account [10].
7https://owasp-aasvs.readthedocs.io/en/latest/requirement-3.2.html

20

https://owasp-aasvs.readthedocs.io/en/latest/requirement-3.2.html

7 Weaknesses

Weakness. The identity authority does not invalidate the session of the user if the user states
that he/she is not the person displayed. Additionally, the identity authority does not provide
any way to the user to log out of his/her current session.

Countermeasures.We recommend to not only unset the cookies in the user’s browser, but also
to invalidate the session on the identity authority upon logout, and when the user states he/she
is not the owner of the account displayed (“not-me”). Additionally, an explicit logout function
should be provided to the user, and the identity authority might want to implement the end
session endpoint in order to allow relying partys to initiate a logout at the identity authority.

Retest. During a retest on 07.06.2019, we reevaluated this weakness. We discovered that
the “not-me” button now properly invalidates the users session at the authorization endpoint.
However, there was still no explicit logout option which the user can use to log out from the
identity authority.

7.7 M06 Identity Authority Allows HTTP Redirect URIs

Exploitability Metrics Impact Metrics
Attack Vector (AV) Network Confidentiality Impact (C) Low
Attack Complexity (AC) High Integrity Impact (I) Low
Privileges Required (PR) None Availability Impact (A) None
User Interaction (UI) Required Scope (S) Unchanged
Subscore: 1.6 Subscore: 2.5

Overall CVSS Score for M06 : 4.2

General Description. During the process of dynamic client registration, it is possible to specify
the type of client by using the parameterapplication_type. Valid values for the parameter
are “native” and “web”. According to the ID4me standard, “native” clients must use customURI
schemes or the HTTP schemewith the hostname localhost as redirect_uri. “Web” clients,
however, must not use the HTTP scheme but rather the HTTPS scheme, and are not allowed
to use the localhost hostname.

Weakness. When registering a “web” client, the identity authority does not enforce the use of
the HTTPS scheme for the redirect_uri but also allows the use of the HTTP scheme.

Countermeasures. We recommend enforcing the use of the HTTPS scheme for redirect URIs
of “web” clients. Client registration requests for “web” clients containing a redirect URI, which
uses the HTTP scheme or the hostname localhost, should be rejected by the identity author-
ity.

21

localhost
localhost
localhost

7 Weaknesses

7.8 L01 Missing Brute Force Protections

Exploitability Metrics Impact Metrics
Attack Vector (AV) Network Confidentiality Impact (C) Low
Attack Complexity (AC) High Integrity Impact (I) None
Privileges Required (PR) None Availability Impact (A) None
User Interaction (UI) None Scope (S) Unchanged
Subscore: 2.2 Subscore: 1.4

Overall CVSS Score for L01 : 3.7

General Description. Brute force attacks rely on the sheer amount of tries to find the correct
input. To prevent these kind of attacks, countermeasures such as CAPTCHAs and account
lockouts exist.

Weakness. The identity authority does not prevent brute force attacks on user passwords. An
attacker can make unthrottled guesses for a user’s password, and if the password is correctly
guessed, the attacker can log into the user’s account.

Countermeasures. We recommend implementing CAPTCHAs to prevent automated brute
force attacks. We discourage the implementation of account lockouts since these can be
abused for Denial of Service (DoS) attacks.

7.9 L02 Denial-of-Service Attack at the Identity Agent

Exploitability Metrics Impact Metrics
Attack Vector (AV) Network Confidentiality Impact (C) None
Attack Complexity (AC) High Integrity Impact (I) None
Privileges Required (PR) None Availability Impact (A) Low
User Interaction (UI) None Scope (S) Unchanged
Subscore: 2.2 Subscore: 1.4

Overall CVSS Score for L02 : 3.7

General Description. The identity agent attempts to access the JWKS file of an identity au-
thority upon receiving an access token at the userinfo endpoint in order to verify the sig-
nature of the access token. Instead of using the discovery mechanism to determine the
JWKS URL, the identity agent directly requests the JWKS file at *Identity Authority
URL*/jwks.json.

Weakness. During the penetration test, it was possible to provide a 2.5 GB image file as the
jwks.json to the identity agent. The identity agent started to download the image file and did
not terminate the connection after a particular time or after a certain amount of downloaded
data occured. This behavior could result in a Denial-of-Service attack when an attacker makes
multiple requests to the userinfo endpoint, tricking the identity agent into downloadingmultiple
large files and consuming network, memory, and other resources of the identity agent.

22

7 Weaknesses

Countermeasures. We recommend only downloading a reasonable amount of data when the
identity agent attempts to access the JWKS file of an identity authority, and terminating the
connection if either the maximum amount of data is exceeded, or the download is not finished
after a reasonable amount of time.

Retest. An update of the identity agent was implemented during the penetration test. We
can confirm that this weakness has been successfully fixed. The identity agent terminates the
connection after a certain period of time instead of trying to download the JWKS files for an
unlimited amount of time.

23

8 Recommendations

8 Recommendations

In the following sections, we provide our recommendations to improve the security of the tested
system.

8.1 R01 Issue a New Access Token to Access the Identity Agent at Userinfo
Endpoint

General Description.When the relying party accesses the userinfo endpoint of the identity au-
thority using an access token, the identity authority makes use of the distributed claims feature
and informs the relying party that the claims can be accessed at the userinfo endpoint of the
identity agent. In the current scenario, the relying party uses the same access token to access
the userinfo endpoint of the identity agent afterwards. The identity agent does not use token
introspection but directly validates the signature and timestamps in the access token. If the
access token is revoked at the identity authority, the identity agent is not aware of this fact.

The following scenario adjustment could enable the identity authority to make sure revoked
access tokens cannot be used to access the identity agent. Instead of reflecting the access
token used to access its userinfo endpoint, the identity authority issues a new access token
and provides it to the relying party. This new access token needs to contain a random and
unique value for the jti field and an aud field matching the identity agent. The identity agent
must properly validate all security parameters of the access token (iss, aud, jti, timestamps,
and the signature). In combination with R02 , this adjustment ensures that the relying party is
not able to directly access the userinfo endpoint of the identity agent; it is forced to firstly access
the userinfo endpoint of the identity authority every time it wants to access user claims.

Recommendation. During the penetration test, DENIC informed us that in the future, it is
planned that when the relying party accesses the userinfo endpoint of the identity authority,
a new access token will be issued. We recommend implementing this adjustment and issue a
new as described above.

8.2 R02 Implement Access Tokens as One-Time-Use Tokens at Identity Agent

General Description. When the relying party accesses the userinfo endpoint of the identity
agent, the identity agent does not use token introspection. The identity agent does not know
whether the access token has been revoked at the identity authority and provides the requested
claims to the relying party based upon the access token validity (i.e., if it is not expired and the
signature is valid). However, the following scenario adjustment could enable the identity agent
to ensure that revoked access tokens cannot be used to access its userinfo endpoint. Instead
of allowing an unlimited number of requests to access the user claims within the validity period
of an access token, each access token should be accepted only once. As described in R01 ,
the access token intended to be used to access the userinfo endpoint of the identity agent
should contain a random and unique jti value. The identity agent can then store this value
for the validity period of an access token in order to validate the freshness of additional access
tokens. In combination with R01 , this adjustment ensures that the relying party needs to

24

8 Recommendations

firstly access the userinfo endpoint of the identity authority every time it attempts to access
user claims, instead of being able to directly access the userinfo endpoint of the identity agent.
This enables access token revocation to be effective in the analyzed scenario.

Recommendation. We recommend only accepting an access token and provide the requested
claims after successfully verifying that no access token with the same jti has been received
before.

8.3 R03 Revoke Authorization Code When It Is Redeemed Using False Client
Credentials

General Description. In order to redeem an authorization code at the identity authority, valid
client credentials are necessary. The credentials must belong to the relying party which the
authorization code is intended for. A token request which contains valid client credentials for
a relying party but an authorization code which was issued for another client might indicate
that the authorization code has been compromised. Therefore, the authorization code should
be invalidated in order to mitigate a possible attack.

Recommendation. We recommend invalidating the authorization code if the token endpoint
of the identity authority receives a token request with invalid client credentials (i.e., the client
credentials do not match the specific authorization code).

8.4 R04 Revoke Tokens If the Related Authorization Code Is Redeemed a
Second Time

General Description. When an authorization code is sent to the token endpoint of the identity
authority, tokens are issued to the sender and the authorization code is invalidated. Redeeming
the same authorization code at the token endpoint again is not possible. However, this second
attempt to redeem an authorization code might indicate that the authorization code has been
compromised. The identity authority cannot determine whether the relying party or an attacker
initiated the first or second token request. Therefore, all tokens issued in response to the first
token request should be revoked in order to mitigate a possible attack.

Recommendation. We recommend revoking all tokens related to an authorization code if a
token request containing a previously redeemed authorization code is received at the token
endpoint of the identity authority.

8.5 R05 Revoke Tokens When the User Changes his Password

General Description. A user can use the dashboard of the identity authority to change the
password for his account. However, all tokens issued prior to the password change are not
revoked and can still be used to access both the userinfo endpoints of the identity authority
and the identity agent.

25

8 Recommendations

Recommendation. We recommend revoking all current tokens related to a user who changes
his password at the identity authority.

8.6 R06 Implement Refresh Tokens as One-Time-Use Tokens

General Description. When a refresh token is sent to the token endpoint of the identity au-
thority, a new access token and a new refresh token are issued to the sender. However, the old
refresh token is not invalidated and can be redeemed to obtain new tokens multiple times. This
increases the attack surface because a leaked refresh token can be used to obtain new valid
access and refresh tokens even if the leaked refresh token has been used by the victim prior to
the leak.

Recommendation. We recommend invalidating refresh tokens after they have been used to
obtain a new access and refresh token at the token endpoint of the identity authority. Fur-
ther information and recommendations on the protection of refresh tokens can be found in the
“OAuth 2.0 Security Best Current Practice”’ [3, section 4.12].

8.7 R07 Revoke Tokens When a Refresh Token Is Redeemed a Second Time

General Description. Receiving multiple requests at the token endpoint containing the same
refresh tokenmight indicate that the refresh token has been compromised. Therefore, the iden-
tity authority should revoke all access tokens and refresh tokens related to the refresh token
when it receives a request containing this specific refresh token for the second time.

Recommendation. We recommend revoking all tokens related to a refresh token if the identity
authority receives a request containing an already redeemed refresh token. Further informa-
tion and recommendations on the protection of refresh tokens can be found in the “OAuth 2.0
Security Best Current Practice” [3, section 4.12].

8.8 R08 Prevent Concurrent Logins

General Description. If multiple valid sessions can exist for the same user at the same time, this
behavior is called concurrent logins. Concurrent logins make it harder to detect if an account
has been compromised and should be avoided unless absolutely necessary [10].

Recommendation. We recommend preventing concurrent logins at the authorization endpoint
by invalidating all other active sessions upon a new login of one user.

26

8 Recommendations

8.9 R09 Secure Cookies with HttpOnly Flag

General Description. In most cases, the user’s session on the server is associatedwith a unique
identifier. This identifier is usually stored within a cookie in the client’s browser and attached
to every request to the corresponding website. An attacker, who wants to obtain the user’s
session, could exploit a cross-site scripting (XSS) vulnerability in the target application and use
the injected JavaScript code to steal the user’s cookie. To prevent an attacker from stealing
the cookie, the HttpOnly flag was introduced. It prevents JavaScript from accessing cookies
which were set using this flag.

Recommendation. We recommend always setting sensitive cookies (including session cook-
ies) with the HttpOnly flag. In particular, this affects the session cookies sub_sid_
current and sub_sid_XXX.

8.10 R10 Secure Cookies with Secure Flag

General Description. Cookies and their sensitive content might be leaked over insecure (un-
encrypted) connections. The secure cookie flag instructs browsers to only send cookies over
encrypted HTTPS connections.

Recommendation. We recommend always using the secure flag unless it is inevitable that
the service can be used via an insecure HTTP connection.

8.11 R11 Enforce HTTP Stricts Transport Security

General Description. HTTP strict transport security (HSTS) was introduced to prevent
browsers from sending unsecured HTTP requests. It is enabled by setting the Strict-
Transport-Security HTTP header. This header contains a time value which indicates
for how long the website should only be accessed using HTTPS [8].

Recommendation. We recommend enabling HSTS on all pages by setting the following HTTP
header with an appropriate time-interval:

1 Strict-Transport-Security: max-age=[time-interval]; includeSubDomains

Additionally, it should be considered to apply for inclusion in Google Chromium’s HSTS preload
list.8 This list is included in major browsers and specifies domains whichmust only be accessed
using HTTPS. The advantage of the list is that for the first visit of the user HSTS is already
enforced by the browser.

8https://hstspreload.org

27

https://hstspreload.org

8 Recommendations

8.12 R12 Restrict Cross-Origin Resource Sharing to Whitelist

General Description. Cross-origin resource sharing (CORS) is a mechanism to share resources
across domain boundaries. However, overly permissive CORS settings can lead to security
issues as JavaScript can access the respective endpoints from any domain. All tested endpoints
which have no web front end respond with valid CORS HTTP headers and set the Access-
Control-Allow-Origin header value to the request’s Origin HTTP header value.

Recommendation.Werecommend implementing awhitelist of allowed origins instead of using
the Origin header for the Access-Control-Allow-Origin value.

8.13 R13 Enable Content Security Policy

General Description. The Content Security Policy (CSP) is a security mechanism that is used
to instruct the browser which actions are allowed on the website and which are not. This
covers locations from which resources might be loaded or which might frame the website.
Additionally, it can be used to allow or deny loading specific types of resources.

Recommendation. We recommend that the application applies a strict CSP to prevent attacks
such as XSS and Clickjacking.

8.14 R14 Set XSS Protection HTTP Header

General Description. To prevent exploitation of missed XSS vulnerabilities at the web appli-
cation, browser vendors implemented XSS filters. These filters can be enabled and configured
for different modes with specific HTTP headers [9].

Recommendation. We recommend adding the X-XSS-Protection HTTP header to all re-
sponses to enable the browsers XSS filter. We recommend that the HTTP header is used with
the mode=block option if possible [9].

8.15 R15 Disable Referer HTTP Header

General Description. The Referer HTTP header is attached to almost every HTTP request
by the browser. It is set to the URL of the page which the user’s browser is coming from.
This can cause information leaks as parameters contained in the URL can be leaked to another
party [9]. In the case of DENIC ID the Referer which is attached to the request of a relying
party’s logo will leak the nonce and state of the authorization flow. This could be a potential
security issue if the relying party’s logo is hosted on a different website. To prevent information
leaks through the Referer header, the Referrer-Policy header exists. It can be used to
disable the Referer header completely.

Recommendation. We recommend adding the HTTP header Referrer-Policy: no-
referrer to every response to disable the usage of the Referer HTTP header [9].

28

8 Recommendations

8.16 R16 Disable Content Type Sniffing

General Description. To provide a better user experience, browsers attempt to determine the
content type of the presented document (in particular Internet Explorer). This so-called content
type sniffing can result in the actually stated content type (Content-Type HTTP header)
being ignored. Therefore, if a server returns JavaScript Object Notation (JSON) data and sets
the correct content type (Content-Type: application/json), the browser might still
determine that the presented data looks like Hypertext Markup Language (HTML) and try to
render it. This could result in security vulnerabilities such as XSS. To prevent content type
sniffing, the HTTP header X-Content-Type-Options can be used [9].

Recommendation. We recommend adding the HTTP header X-Content-Type-Options
: nosniff to all responses to prevent content type sniffing.

8.17 R17 Set Cache Control HTTP Headers

Description. On some pages, the application uses the Expires HTTP header with the value
epoch, resulting in those pages being immediately invalidated in the browser cache. However,
the application does not use the HTTP headers Cache-control and Pragmawhich can be
used to prevent any caching by the browser.

Recommendation. We recommend adding the HTTP headers Cache-control: no-
store, Pragma: no-cache, and Expires: -1 on all pages which should not be cached.
This will prevent the browser from caching any of those pages.

8.18 R18 Use Discovery Mechanism at Identity Agent

General Description. When the identity agent receives an access token, it needs to access
the JWKS file of the identity authority which issued the access token in order to verify the
signature. However, the identity agent does not use the discovery mechanism to determine
the URL of the identity authority’s JWKS file. Instead, it tries to access the JWKS file at the URL
Identity Authority/jwks.json directly. Depending on the configuration of the
identity authority, the JWKS file might be located at a different URL and this URL might change
in the future. Therefore, the identity agent should use the discovery mechanism to determine
the correct location of the JWKS file and use the URL provided by the identity authority to
access the JWKS file afterward.

Recommendation. We recommend ensuring that the identity agent always uses the discovery
mechanism to determine the metadata and URLs of the identity authority instead of trying
to access endpoints or files at the identity authority based on URLs hardcoded or obtained
earlier.

29

9 Information

9 Information

In the following sections, we describe observations of unusual configurations and possibly un-
wanted behavior of the tested system.

9.1 I01 Information Disclosure on the Consent Page

General Description. The authorization request to the identity authority can contain an optional
parameter calledprompt. This parameter is used by the relying party to indicate to the identity
authority how it should handle active sessions of the user. Valid values are: “login”, “consent”,
“none”, and “select_account”.

If the authorization request to the identity authority contains the parameter prompt and is set
to “select_account”, the consent page delivered by the identity authority contains a stacktrace.
The stacktrace reveals internal data to the public. An example of the displayed stacktrace is
depicted in Listing 4.

Countermeasures. We recommend never displaying internal error messages like stacktraces
to the user.

30

9 Information

1 FreeMarker template error (DEBUG mode; use RETHROW in production!):
2 The following has evaluated to null or missing:
3 ==> knownSession.id [in template ”de/denic/domainid/authendpoint/view/login.ftl” at line 25, column 111]
4 ...
5 −−−−
6 FTL stack trace (”~” means nesting−related):
7 − Failed at: ${knownSession.id} [in template ”de/denic/domainid/authendpoint/view/login.ftl” at line 25, column 109]
8 −−−−
9 Java stack trace (for programmers):
10 −−−−
11 freemarker.core.InvalidReferenceException: [... Exception message was already printed; see it above ...]
12 at freemarker.core.InvalidReferenceException.getInstance(InvalidReferenceException.java:134)
13 at freemarker.core.EvalUtil.coerceModelToTextualCommon(EvalUtil.java:467)
14 at freemarker.core.EvalUtil.coerceModelToStringOrMarkup(EvalUtil.java:389)
15 at freemarker.core.EvalUtil.coerceModelToStringOrMarkup(EvalUtil.java:358)
16 at freemarker.core.DollarVariable.calculateInterpolatedStringOrMarkup(DollarVariable.java:100)
17 at freemarker.core.DollarVariable.accept(DollarVariable.java:63)
18 at freemarker.core.Environment.visit(Environment.java:366)
19 at freemarker.core.IteratorBlock$IterationContext.executedNestedContentForCollOrSeqListing(IteratorBlock.java:317)
20 at freemarker.core.IteratorBlock$IterationContext.executeNestedContent(IteratorBlock.java:271)
21 at freemarker.core.IteratorBlock$IterationContext.accept(IteratorBlock.java:242)
22 at freemarker.core.Environment.visitIteratorBlock(Environment.java:642)
23 at freemarker.core.IteratorBlock.acceptWithResult(IteratorBlock.java:107)
24 at freemarker.core.IteratorBlock.accept(IteratorBlock.java:93)
25 at freemarker.core.Environment.visit(Environment.java:330)
26 at freemarker.core.Environment.visit(Environment.java:336)
27 at freemarker.core.Environment.process(Environment.java:309)
28 at freemarker.template.Template.process(Template.java:384)
29 at io.dropwizard.views.freemarker.FreemarkerViewRenderer.render(FreemarkerViewRenderer.java:77)
30 at io.dropwizard.views.ViewMessageBodyWriter.writeTo(ViewMessageBodyWriter.java:81)
31 at io.dropwizard.views.ViewMessageBodyWriter.writeTo(ViewMessageBodyWriter.java:29)
32 at org.glassfish.jersey.message.internal.WriterInterceptorExecutor$TerminalWriterInterceptor.invokeWriteTo(

WriterInterceptorExecutor.java:265)
33 at org.glassfish.jersey.message.internal.WriterInterceptorExecutor$TerminalWriterInterceptor.aroundWriteTo(

WriterInterceptorExecutor.java:250)
34 at org.glassfish.jersey.message.internal.WriterInterceptorExecutor.proceed(WriterInterceptorExecutor.java:162)
35 ...

Listing 4: Stacktrace displayed on the consent page when the prompt parameter of the
authorization request is set to “select_account”.

31

10 Further Evaluations

10 Further Evaluations

In this section, we list further evaluations we conducted in our penetration test. It provides
useful information for future security evaluations.

10.1 OpenID Connect Parameters

The following tests for common OIDC parameters were conducted:

• It is not possible to change the flow from code flow to the implicit flow or hybrid flowusing
the response_type parameter. The identity authority rejects requests with values
other than “code” for the response_type parameter and responds with different error
messages.

• Different valid values for the display parameter (“page”, “popup”, “touch” or “wap”)
result in the same consent page being delivered by the identity authority. Invalid
values (e.g., “hackmanit”) result in the request being rejected with the error mes-
sage: HTTP/1.1 404 Not Found ... {”code”:404,”message”:”HTTP
404 Not Found”}

• The parameterresponse_mode seems to be ignored by the identity authority. Different
values both valid (“form_post”, “query”, and “fragment”) and invalid (e.g., “hackmanit”) all
result in the authorization code being delivered as a query parameter.

• Besides the information described in I01 , other valid values for the prompt parameter
are handled correctly:

– If the value is “login”, the identity authority prompts the user to log in even when the
user had a valid session before.

– If the value is “consent”, the identity authority displays a consent page to the user
directly if the user has a valid session.

– If the value is “none”, the identity authority redirects the user back to the relying party
with an error message: error_description=Consent+required&error=
consent_required

10.2 Authorization Code

The following tests for the authorization code were conducted:

• The authorization code can only be redeemed once. If an already redeemed autho-
rization code is sent to the token endpoint of the identity authority a second time,
it is rejected with the error message: HTTP/1.1 400 Bad Request ... {”
error_description”:”Invalid or expired authorization code,
redirection URI mismatch, or PKCE verification failure”,”
error”:”invalid_grant”}

32

10 Further Evaluations

• The authorization code can only be redeemed using the client credentials of the relying
party it was intended for. If the token request does not contain valid client creden-
tials, or the client credentials do not match the relying party the authorization code
was intended for, the identity authority rejects the request with the error message:
HTTP/1.1 400 Bad Request ... {”error_description”:”Invalid
or expired authorization code, redirection URI mismatch, or
PKCE verification failure”,”error”:”invalid_grant”}

10.3 Access Token

The following tests for the access token were conducted:

• The access token is supposed to be valid for 600 seconds. Sending a request to the
userinfo endpoint of the identity authority or identity agent shows that the access token
is not accepted after it has expired.

• The identity authority allows storing the selection of claims a user wants to grant to a
specific relying party permanently by checking the “Remember for future logins with this
client?” box on the consent page. These granted claims can be changed or revoked in
the dashboard of the identity authority. This results in the access token no longer being
valid at the userinfo endpoint of the identity authority. As the scenario does not make use
of token introspection, the identity agent can only determine whether an access token
is valid or not based on the contained timestamps. Therefore, the access token is still
considered to be valid at the userinfo endpoint of the identity agent and can still be used
to access user information after the granted claims have been changed in the dashboard
of the identity authority. If recommendations R01 and R02 will be implemented, the
identity agent will not be accessible with revoked access tokens anymore.

• The claims parameter in the authorization request contains a JSON document. This
document specifies which claims the relying party would like to access using the access
token. It is possible to specify that the claims should be contained directly in the ID token
instead of being accessed at the userinfo endpoint later. However, when the authorization
request contains a JSON document requesting this behavior, the ID token issued by the
identity authority later does not contain the requested claims and the access token does
not contain any claims either. The userinfo endpoints of both the identity authority and
identity agent do not deliver any claims when invoked with the obtained access token.

• Adding unknown claims (e.g., “hackmanit”) to the JSON document in the claims param-
eter in the authorization request does not result in an error. However, unknown claims
are not contained in the access token issued by the identity authority and, therefore, not
provided by the userinfo endpoint of the identity agent.

10.4 Refresh Token

The identity authority issues a refresh token in addition to the access token and ID token if the
authorization request does not contain theclaims parameter. To be able to use refresh tokens

33

10 Further Evaluations

later, the relying party needs to register the “refresh_token” grant type during its client regis-
tration by adding it to the grant_types field in the client registration request. The following
tests for the refresh token were conducted:

• A refresh token can only be redeemed at the token endpoint of the identity au-
thority using the correct client credentials. If the request does not contain client
credentials, invalid client credentials, or valid client credentials which do not belong
to the relying party the refresh token was issued for, the identity authority rejects
the request with the error message: HTTP/1.1 401 Unauthorized ... {”
error_description”:”Invalid client: Possible causes may be
missing \/ invalid client_id, missing client authentication
, invalid or expired client secret, invalid or expired
JWT authentication, or a mismatch between registered and
submitted client authentication method”,”error”:”invalid_
client”}

10.5 Client Registration Endpoint

The following tests for the client registration endpoint were conducted:

• When registering a new client the parameters preferred_client_id and
preferred_client_secret are ignored and cannot be used to decide which client
id and client secret the identity authority assigns to the client.

• When the parameterapplication_type is set to “native”, theredirect_urimust
use the HTTP scheme and the hostname localhost. Registering a “native” client using the
HTTPS scheme, other hostnames (including localhost.com), or malicious redirect URIs
(e.g., http://localhost.attacker.com or http://localhost:x@attacker.com), is not possible.

• When the parameter application_type is set to “web”, the redirect_uri must
not use the hostname localhost. Registering a “web” client using the hostname localhost
is not possible. However, the identity authority does not enforce the use of the HTTPS
scheme for the redirect_uri of “web” clients (see M06)

• It is not possible to register a client using the javascript: scheme in the redirect
_uri parameter.

• When registering a new client, it is possible to define which grant types the client should
be authorized to use. However, the identity authority does not assign the grant types “im-
plicit”, “client_credentials”, “password”, “urn:ietf:params:oauth:grant-type:jwt-bearer”, or
“urn:ietf:params:oauth:grant-type:saml2-bearer” to the client evenwhen they are present
in the field grant_types in the client registration request. The only grant types the
identity authority allows clients to specify are “authorization_code”, and the combination
of “authorization_code” and “refresh_token”.

• The client registration endpoint can additionally be used to view the information
stored for a registered client. In order to access this information, a GET request
containing the registration access token for the specific client needs to be sent to

34

localhost
localhost.com
http://localhost.attacker.com
http://localhost:x@attacker.com
localhost
localhost

10 Further Evaluations

IdentityAuthority/clients/*client id*. Requests without a registra-
tion access token, or with the registration access token of a different client, are rejected
with an HTTP/1.1 401 Unauthorized error message.

• The client registration endpoint can additionally be used to update certain information
about registered clients. In order to update the information, a PUT request containing
the registration access token for the specific client, and a JSON document containing the
new information, needs to be sent to *IdentityAuthority*/clients/*client
id*. Using such requests, it is possible to update information like the redirect URI or
logo URL, but not the client id. Requests without a registration access token, or with
the registration access token of a different client, are rejected with an HTTP/1.1 401
Unauthorized error message.

• The client registration endpoint can additionally be used to delete registered clients. In
order to delete a client, a DELETE request containing the registration access token for
the specific client needs to be sent to *IdentityAuthority*/clients/*client
id*. Requests without a registration access token, or with the registration access token
of a different client, are rejected with an HTTP/1.1 401 Unauthorized error mes-
sage. After deleting the client, it is no longer possible to access the consent page, token
endpoint, or userinfo endpoint using the client’s client id.

10.6 End Session Endpoint

We were not able to successfully invoke the end session endpoint. If it is used with a
valid sessionID, it responds with the error Access denied by resource owner
or authorization server. If it is used with an invalid sessionID, the end-
point responds with Log-out fails cause required backend resource not
available any more.

10.7 Introspection Endpoint

We were not able to successfully invoke the introspection endpoint. It always denied the
access. While accessing it with valid client credentials resulted in the error message Client
not registered for https://id.test.denic.de/token/introspect

scope, accessing it with an access token resulted in the error Insufficient scope.

10.8 Revocation Endpoint

The following tests for the revocation endpoint were conducted:

• To revoke an access token, the request needs to contain the client credentials of the client
which the access token was issued to. It is not possible to revoke access tokens issued
to other clients.

35

10 Further Evaluations

• After an access token was revoked, it could not be used to access the userinfo endpoint
of the identity authority. Due to design issues, the access token can still be used to access
the identity agent since the access token is a self-containing JWT, and the identity agent
is not supposed to perform token introspection. If recommendations R01 and R02
will be implemented, the identity agent will not be accessible with revoked access token
anymore.

10.9 Token Endpoint

The following tests for the token endpoint were conducted:

• The identity authority enforces that registered clients can only use the grant types they
were authorized to during client registration. Request with values different from these
grant types are rejected with the error message: HTTP/1.1 400 Bad Request
... {”error_description”:”The client is not authorized to
use this grant type”,”error”:”unauthorized_client”}

• The identity authority enforces that the parameter redirect_uri is present and not
empty. Additionally, a strict match between the value of the parameter and the redirect
URI registered during client registration (e.g., https%3A%2F%2F4bgm4tygv3t0vz6h7o
of555x2o8ew3.burpcollaborator.net) is applied. Requests containing the redirect URI
of a different client, as well as the following manipulated redirect URIs, were sent to the
token endpoint:

– https%3A%2F%2Fattacker.com#https%3A%2F%2F4bgm4tygv3t0vz6h7oof555
x2o8ew3.burpcollaborator.net

– https%3A%2F%2Fattacker.com#https%3A%2F%2F4bgm4tygv3t0vz6h7oof555
x2o8ew3.burpcollaborator.net

– https%3A%2F%2Fattacker.com%23https%3A%2F%2F4bgm4tygv3t0vz6h7oof5
55x2o8ew3.burpcollaborator.net

– https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net:
x@attacker.com

– https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net%
3Ax%40attacker.com

– http%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net

– https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net.at
tacker.de

– https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net/ha
ckmanit

– https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net%
2Fhackmanit

– https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net/../

36

https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net
https%3A%2F%2Fattacker.com#https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net
https%3A%2F%2Fattacker.com#https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net
https%3A%2F%2Fattacker.com#https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net
https%3A%2F%2Fattacker.com#https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net
https%3A%2F%2Fattacker.com%23https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net
https%3A%2F%2Fattacker.com%23https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net:x@attacker.com
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net:x@attacker.com
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net%3Ax%40attacker.com
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net%3Ax%40attacker.com
http%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net.attacker.de
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net.attacker.de
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net/hackmanit
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net/hackmanit
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net%2Fhackmanit
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net%2Fhackmanit
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net/../

10 Further Evaluations

– https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net%
2F..%2F

– https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net:
8443

– https%3A%2F%2lF4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net%3
A8443

All requests containing a redirect URI different from the registered one were
rejected with the error message: HTTP/1.1 400 Bad Request ... {”
error_description”:”Invalid or expired authorization code,
redirection URI mismatch, or PKCE verification failure”,”
error”:”invalid_grant”}

10.10 Userinfo Endpoints

In addition to the vulnerabilities discovered, the following tests for the userinfo endpoints were
conducted:

• Both userinfo endpoints do not allow any HTTP method except GET to retrieve user in-
formation. The methods POST, PUT, PATCH, and DELETE are not allowed at all, while
HEAD and OPTIONS do not return any user information.

• The userinfo endpoint of the identity authority can only be accessed using a valid access
token. Both the timestamps and the signature of the JWT are validated. Manipulating the
body of the access token (e.g., by changing the subject sub, adding or removing claims)
invalidates the signature and results in the request being rejected. The identity authority
is not vulnerable to signature exclusion attacks by removing the signature or specifying
the none algorithm in the header of the access token.

• As described inweakness H01 the identity agent does not enforce that the access token
contains a signature. However, if it contains a signature, it has to be a valid one. Requests
containing an access token with an invalid signature are rejected by the identity agent.

• When a request containing twoAuthorizationHTTP headers, which both contain an
access token, is sent to the userinfo endpoint of the identity authority, the second header
is ignored and the access token from the first header is used for further processing.

• Sending a request to the userinfo endpoint of the identity agent containing two
Authorization HTTP headers which both contain a access token results in an error
message independently of the validity of, or user related to, the two access tokens.

• From our observations, we assume that the identity agent uses the identifier pa-
rameter of the access token and queries the DNS to determine which identity authority is
responsible for the identifier. Afterwards, it compares the iss field of the DNS response
with the iss field in the access token. If they match, the JWKS file of the identity author-
ity is accessed and used to verify the signature of the access token. This allowed us to
operate our own identity authority, and craft and self-sign our own access tokens. We
conducted the following tests with self-signed access tokens:

37

https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net%2F..%2F
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net%2F..%2F
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net:8443
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net:8443
https%3A%2F%2lF4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net%3A8443
https%3A%2F%2lF4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net%3A8443

10 Further Evaluations

– The identity agent seems to make use of the combination of the iss and sub fields
to identify a user account. Therefore, it is not possible to access the information
of arbitrary users by self-signing an access token which uses the victim user’s sub
value. The identity agent will combine the sub value with the iss value of our own
identity authority. This combination represents a different user account than the one
of the victim.

– If the access token contains two iss fields, the identity agent does not reject the
request, but uses the value of the second field for all further processing of the access
token. Therefore, it is not possible to trick the identity agent into using our JWKS file
to verify the signature and another iss value to identify the user account.

– If the access token contains an empty iss field or no iss field at all, the identity
agent rejects the request and does not provide any user information.

– The identity agent always tries to access the JWKS file and use the key with the
matching key id (if present in the document) to verify the signature of the access
token. Keys or different URLs to specify the key location present in the header of the
access token itself are ignored.

10.11 Updating Stored Claims

The identity agent allows updating the claims stored for a user account using the https://mw
-beta.id4me.ionos.com/claims endpoint. To access this endpoint, a valid access token is
required. The following tests for the https://mw-beta.id4me.ionos.com/claims endpoint were
conducted:

• The endpoint cannot be accessed with a request containing an empty Authorization
HTTP header or a request without any Authorization HTTP header. The identity
agent rejects these requests with an error message: HTTP/1.1 500 ... {”
status”:500,”error”:”Internal Server Error”,”message”:”org.
springframework.http.ResponseEntity cannot be cast to java.
util.Map”,”timeStamp”:”Thu Mar 14 13:12:42 CET 2019”,”trace
”:null}

• In contrast to the attack described in weakness H01 , this endpoint is not vul-
nerable to signature exclusion attacks. If the access token contains no signa-
ture or the contained signature is invalid, the identity agent responds with an
error: HTTP/1.1 403 ... {”general”:{},”fields”:[{”name”:”error
”,”description”:”Forbidden.”,”msgId”:”Forbidden.”}]}. Specifying
the none algorithm in the header of the access token results in the same error message.

• The endpoint was accessed using different HTTP methods:

– PATCH: The PATCH method is regularly used when the endpoint is accessed using
the update function of the web interface of the identity agent.

– PUT: The PUT method is working with the same parameters as a PATCH request
and results in the same response as the PATCH request.

38

https://mw-beta.id4me.ionos.com/claims
https://mw-beta.id4me.ionos.com/claims
https://mw-beta.id4me.ionos.com/claims

10 Further Evaluations

– DELETE: The DELETE method can be used to delete the claims stored for the user
account. All claims are deleted and an overview of the deleted claims is contained
in the response of the endpoint.

– GET: The GET method deletes all claims and responds with an updated updated_
at value independently of the GET parameters contained in the request.

10.12 Open Redirects

We evaluated all URLs in the scope of this penetration test and their corresponding parameters
for open redirects. This includes the redirect_uri parameter which is strictly validated
against the registered redirect URIs of the specific client using simple string comparison. We
were not able to identify any open redirect.

10.13 Cross-site Scripting

We evaluated all parameters reflected to the end-user for XSS vulnerabilities. All parameters
that were reflected at some point were placed either into the HTML context or into the attribute
context. Therefore, all payloads aimed either to directly inject HTML elements, or to escape from
attribute values and inject additional attributes. The default payload for manually evaluating
was ”’<> to simply check if any of the characters were injected into the website unencoded.
We discovered that the application uses either URL encoding or HTML entity encoding for all
reflected values. As this prevents us from injecting arbitrary HTML code or new attributes and
event handlers; we were not able to execute arbitrary JavaScript code.

10.14 XML-based Attacks

We evaluated if any endpoint in the scope of the penetration test processes eXtended Markup
Language (XML) data contained in the request. We used different test payloads for XML DoS
and XML External Entity (XXE) attacks. However, no endpoint processed the XML data and no
vulnerability based on XML could be identified.

10.15 TLS Configuration

We tested the TLS configuration of both the identity agent and the identity authority with
testssl.sh and TLS-Scanner. While the servers use different TLS configurations, their configu-
rations are both secure and they are not vulnerable to any relevant attack. Both servers support
TLS 1.0 or higher and secure cryptographic algorithms.

The results of testssl.sh are provided in Listing 5 and Listing 6.

39

10 Further Evaluations

1 Testing protocols via sockets except NPN+ALPN
2
3 SSLv2 not offered (OK)
4 SSLv3 not offered (OK)
5 TLS 1 offered
6 TLS 1.1 offered
7 TLS 1.2 offered (OK)
8 TLS 1.3 not offered
9 NPN/SPDY h2, http/1.1, acme−tls/1 (advertised)
10 ALPN/HTTP2 h2, http/1.1 (offered)
11
12 Testing cipher categories
13
14 NULL ciphers (no encryption) not offered (OK)
15 Anonymous NULL Ciphers (no authentication) not offered (OK)
16 Export ciphers (w/o ADH+NULL) not offered (OK)
17 LOW: 64 Bit + DES, RC[2,4] (w/o export) not offered (OK)
18 Triple DES Ciphers / IDEA offered (NOT ok)
19 Average: SEED + 128+256 Bit CBC ciphers offered
20 Strong encryption (AEAD ciphers) offered (OK)
21
22
23 Testing robust (perfect) forward secrecy, (P)FS −− omitting Null Authentication/Encryption, 3DES, RC4
24
25 PFS is offered (OK) ECDHE−RSA−AES256−GCM−SHA384 ECDHE−RSA−AES256−SHA
26 ECDHE−RSA−CHACHA20−POLY1305
27 ECDHE−RSA−AES128−GCM−SHA256 ECDHE−RSA−AES128−SHA
28 Elliptic curves offered: prime256v1 secp384r1 secp521r1 X25519
29
30
31 Testing server preferences
32
33 Has server cipher order? yes (OK)
34 Negotiated protocol TLSv1.2
35 Negotiated cipher ECDHE−RSA−AES128−GCM−SHA256, 256 bit ECDH (P−256)
36 Cipher order
37 TLSv1: ECDHE−RSA−AES128−SHA ECDHE−RSA−AES256−SHA AES128−SHA AES256−SHA
38 ECDHE−RSA−DES−CBC3−SHA DES−CBC3−SHA
39 TLSv1.1: ECDHE−RSA−AES128−SHA ECDHE−RSA−AES256−SHA AES128−SHA AES256−SHA
40 ECDHE−RSA−DES−CBC3−SHA DES−CBC3−SHA
41 TLSv1.2: ECDHE−RSA−AES128−GCM−SHA256 ECDHE−RSA−AES256−GCM−SHA384
42 ECDHE−RSA−CHACHA20−POLY1305 ECDHE−RSA−AES128−SHA
43 ECDHE−RSA−AES256−SHA AES128−GCM−SHA256 AES256−GCM−SHA384
44 AES128−SHA AES256−SHA ECDHE−RSA−DES−CBC3−SHA DES−CBC3−SHA
45
46
47 Testing server defaults (Server Hello)
48
49 TLS extensions (standard) ”next protocol/#13172” ”session ticket/#35”
50 ”renegotiation info/#65281”
51 ”application layer protocol negotiation/#16”
52 Session Ticket RFC 5077 hint (no lifetime advertised)
53 SSL Session ID support yes
54 Session Resumption Tickets: yes, ID: no
55 TLS clock skew Random values, no fingerprinting possible
56 Signature Algorithm SHA256 with RSA
57 Server key size RSA 2048 bits
58 Server key usage Digital Signature, Key Encipherment
59 Server extended key usage TLS Web Server Authentication, TLS Web Client Authentication
60 Serial / Fingerprints 03CC50B3831362F7ABED840DB869BAEAC811 / SHA1 7C3467E08EE097DB532E50EB0A4EC4D

28457F35B
61 SHA256 4D4A06CED3FEF289D47FEDA4E22910CF9B2B63EE8914938B8BB0025FA5818A81
62 Common Name (CN) id.test.denic.de (CN in response to request w/o SNI: mTRAEFIK DEFAULT CERT)
63 subjectAltName (SAN) id.test.denic.de
64 Issuer Let’s Encrypt Authority X3 (mLet’s Encrypt from mUS)
65 Trust (hostname) Ok via SAN and CN (SNI mandatory)
66 Chain of trust Ok

40

10 Further Evaluations

67 EV cert (experimental) no
68 ”eTLS” (visibility info) not present
69 Certificate Validity (UTC) 82 >= 30 days (2019−03−06 15:50 −−> 2019−06−04 15:50)
70 # of certificates provided 2
71 Certificate Revocation List −−
72 OCSP URI http://ocsp.int−x3.letsencrypt.org
73 OCSP stapling not offered
74 OCSP must staple extension −−
75 DNS CAA RR (experimental) not offered
76 Certificate Transparency yes (certificate extension)
77
78 Testing vulnerabilities
79
80 Heartbleed (CVE−2014−0160) not vulnerable (OK), no heartbeat extension
81 CCS (CVE−2014−0224) not vulnerable (OK)
82 Ticketbleed (CVE−2016−9244), experiment. not vulnerable (OK), reply empty
83 ROBOT not vulnerable (OK)
84 Secure Renegotiation (CVE−2009−3555) not vulnerable (OK)
85 Secure Client−Initiated Renegotiation not vulnerable (OK)
86 CRIME, TLS (CVE−2012−4929) not vulnerable (OK)
87 BREACH (CVE−2013−3587) no HTTP compression (OK) − only supplied ”/” tested
88 POODLE, SSL (CVE−2014−3566) not vulnerable (OK)
89 TLS_FALLBACK_SCSV (RFC 7507) Downgrade attack prevention supported (OK)
90 SWEET32 (CVE−2016−2183, CVE−2016−6329) VULNERABLE, uses 64 bit block ciphers
91 FREAK (CVE−2015−0204) not vulnerable (OK)
92 DROWN (CVE−2016−0800, CVE−2016−0703) not vulnerable on this host and port (OK)
93 make sure you don’t use this certificate elsewhere with SSLv2 enabled services
94 https://censys.io/ipv4?q=4D4A06CED3FEF289D47FEDA4E22910CF9B2B63EE8914938B8BB0025FA5818A81 could help

you to find out
95 LOGJAM (CVE−2015−4000), experimental not vulnerable (OK): no DH EXPORT ciphers, no DH key detected with <= TLS 1.2
96 BEAST (CVE−2011−3389) TLS1: ECDHE−RSA−AES128−SHA
97 ECDHE−RSA−AES256−SHA
98 AES128−SHA AES256−SHA
99 ECDHE−RSA−DES−CBC3−SHA
100 DES−CBC3−SHA
101 VULNERABLE −− but also supports higher protocols TLSv1.1 TLSv1.2 (likely mitigated)
102 LUCKY13 (CVE−2013−0169), experimental potentially VULNERABLE, uses cipher block chaining (CBC) ciphers with TLS.

Check patches
103 RC4 (CVE−2013−2566, CVE−2015−2808) no RC4 ciphers detected (OK)

Listing 5: testssl.sh scan of id.test.denic.de

1 Testing protocols via sockets except NPN+ALPN
2
3 SSLv2 mnot offered (OK)
4 SSLv3 mnot offered (OK)
5 TLS 1 not offered
6 TLS 1.1 not offered
7 TLS 1.2 moffered (OK)
8 TLS 1.3 not offered
9 NPN/SPDY http/1.1 (advertised)
10 ALPN/HTTP2 http/1.1 (offered)
11
12 Testing cipher categories
13
14 NULL ciphers (no encryption) not offered (OK)
15 Anonymous NULL Ciphers (no authentication) not offered (OK)
16 Export ciphers (w/o ADH+NULL) not offered (OK)
17 LOW: 64 Bit + DES, RC[2,4] (w/o export) not offered (OK)
18 Triple DES Ciphers / IDEA not offered (OK)
19 Average: SEED + 128+256 Bit CBC ciphers offered
20 Strong encryption (AEAD ciphers) offered (OK)
21
22
23 Testing robust (perfect) forward secrecy, (P)FS −− omitting Null Authentication/Encryption, 3DES, RC4

41

10 Further Evaluations

24
25 PFS is offered (OK) ECDHE−RSA−AES256−GCM−SHA384
26 ECDHE−RSA−AES256−SHA384 ECDHE−RSA−AES256−SHA
27 ECDHE−RSA−AES128−GCM−SHA256
28 ECDHE−RSA−AES128−SHA256 ECDHE−RSA−AES128−SHA
29 DHE−RSA−AES128−GCM−SHA256 DHE−RSA−AES128−CCM8
30 DHE−RSA−AES128−CCM DHE−RSA−AES128−SHA256
31 DHE−RSA−AES128−SHA
32 Elliptic curves offered: prime256v1 secp384r1 secp521r1 X25519 X448
33 DH group offered: Unknown DH group (2048 bits)
34
35 Testing server preferences
36
37 Has server cipher order? yes (OK)
38 Negotiated protocol TLSv1.2
39 Negotiated cipher ECDHE−RSA−AES256−GCM−SHA384, 256 bit ECDH (P−256)
40 Cipher order
41 TLSv1.2: ECDHE−RSA−AES256−GCM−SHA384 ECDHE−RSA−AES128−GCM−SHA256
42 ECDHE−RSA−AES256−SHA384 ECDHE−RSA−AES256−SHA
43 ECDHE−RSA−AES128−SHA256 ECDHE−RSA−AES128−SHA
44 DHE−RSA−AES128−GCM−SHA256 DHE−RSA−AES128−CCM8 DHE−RSA−AES128−CCM
45 DHE−RSA−AES128−SHA256 DHE−RSA−AES128−SHA
46
47
48 Testing server defaults (Server Hello)
49
50 TLS extensions (standard) ”renegotiation info/#65281” ”server name/#0”
51 ”EC point formats/#11” ”session ticket/#35”
52 ”next protocol/#13172” ”max fragment length/#1”
53 ”application layer protocol negotiation/#16”
54 ”encrypt−then−mac/#22”
55 ”extended master secret/#23”
56 Session Ticket RFC 5077 hint 10800 seconds, session tickets keys seems to be rotated < daily
57 SSL Session ID support yes
58 Session Resumption Tickets: yes, ID: yes
59 TLS clock skew Random values, no fingerprinting possible
60 Signature Algorithm SHA256 with RSA
61 Server key size RSA 2048 bits
62 Server key usage Digital Signature, Key Encipherment
63 Server extended key usage TLS Web Server Authentication, TLS Web Client Authentication
64 Serial / Fingerprints 04C4BAD16928B01B55A137CC4EF0EA4E / SHA1 62C19E9B102D1C8929CDFA1856F59E299272DA

39
65 SHA256 89237DA7647C13157728CCD3E627C4B9F620D76C0AA1869F3C76A83FF63E50BD
66 Common Name (CN) *.id4me.ionos.com (CN in response to request w/o SNI: *)
67 subjectAltName (SAN) *.id4me.ionos.com
68 Issuer GeoTrust RSA CA 2018 (DigiCert Inc from US)
69 Trust (hostname) Ok via SAN wildcard and CN wildcard (SNI mandatory)
70 Chain of trust Ok
71 EV cert (experimental) no
72 ”eTLS” (visibility info) not present
73 Certificate Validity (UTC) 643 >= 60 days (2018−12−17 00:00 −−> 2020−12−16 12:00)
74 # of certificates provided 2
75 Certificate Revocation List http://cdp.geotrust.com/GeoTrustRSACA2018.crl
76 OCSP URI http://status.geotrust.com
77 OCSP stapling not offered
78 OCSP must staple extension −−
79 DNS CAA RR (experimental) not offered
80 Certificate Transparency yes (certificate extension)
81
82
83 Testing vulnerabilities
84
85 Heartbleed (CVE−2014−0160) not vulnerable (OK), no heartbeat extension
86 CCS (CVE−2014−0224) not vulnerable (OK)
87 Ticketbleed (CVE−2016−9244), experiment. not vulnerable (OK)
88 ROBOT Server does not support any cipher suites that use RSA key transport
89 Secure Renegotiation (CVE−2009−3555) not vulnerable (OK)

42

10 Further Evaluations

90 Secure Client−Initiated Renegotiation not vulnerable (OK)
91 CRIME, TLS (CVE−2012−4929) not vulnerable (OK)
92 BREACH (CVE−2013−3587) no HTTP compression (OK) − only supplied ”/” tested
93 POODLE, SSL (CVE−2014−3566) not vulnerable (OK)
94 TLS_FALLBACK_SCSV (RFC 7507) No fallback possible, no protocol below TLS 1.2 offered (OK)
95 SWEET32 (CVE−2016−2183, CVE−2016−6329) not vulnerable (OK)
96 FREAK (CVE−2015−0204) not vulnerable (OK)
97 DROWN (CVE−2016−0800, CVE−2016−0703) not vulnerable on this host and port (OK)
98 make sure you don’t use this certificate elsewhere with SSLv2 enabled services
99 https://censys.io/ipv4?q=89237DA7647C13157728CCD3E627C4B9F620D76C0AA1869F3C76A83FF63E50BD could help

you to find out
100 LOGJAM (CVE−2015−4000), experimental not vulnerable (OK): no DH EXPORT ciphers, no common prime detected
101 BEAST (CVE−2011−3389) no SSL3 or TLS1 (OK)
102 LUCKY13 (CVE−2013−0169), experimental potentially VULNERABLE, uses cipher block chaining (CBC) ciphers with TLS.

Check patches
103 RC4 (CVE−2013−2566, CVE−2015−2808) no RC4 ciphers detected (OK)

Listing 6: testssl.sh scan of api-beta.id4me.ionos.com

43

11 References

11 References

[1] Vittorio Bertola. ID4me Technical Overview. https://id4me.org/documents/. June 2018.
[2] M. Jones. JSON Web Algorithms (JWA). RFC 7518 (Proposed Standard). Internet Engi-

neering Task Force, May 2015. url: http://www.ietf.org/rfc/rfc7518.txt.
[3] T. Lodderstedt et al.OAuth 2.0 Security Best Current Practice. Draft-ietf-oauth-security-

topics-12. https://tools.ietf.org/html/draft-ietf-oauth-security-topics-12. 2019.
[4] P.V. Mockapetris. Domain names - concepts and facilities. RFC 1034 (Proposed Stan-

dard). Internet Engineering Task Force, Nov. 1987. url: https://tools.ietf.org/html/rfc1034.
[5] OWASP. Clickjacking. url: https://www.owasp.org/index.php/Clickjacking.
[6] OWASP. Clickjacking Defense Cheat Sheet. https : / / github . com / OWASP /

CheatSheetSeries/blob/master /cheatsheets/Clickjacking_Defense_Cheat_Sheet .md.
2019.

[7] OWASP. Cross-Site Request Forgery (CSRF). May 2016. url: https://www.owasp.org/
index.php/Cross-Site_Request_Forgery_(CSRF).

[8] OWASP. HTTP Strict Transport Security Cheat Sheet. https : / / github . com /OWASP /
CheatSheetSeries/blob/master/cheatsheets/HTTP_Strict_Transport_Security_Cheat_
Sheet.md. 2019.

[9] OWASP.OWASP Secure Headers Project. https://www.owasp.org/index.php/OWASP_
Secure_Headers_Project. 2019.

[10] OWASP. Session Management Cheat Sheet. https : / / www . owasp . org / index . php /
Session_Management_Cheat_Sheet.

[11] N. Sakimura, J. Bradley, and M. Jones. OpenID Connect Dynamic Client Registration
1.0. OpenID Foundation, Nov. 2014. url: http : / / openid . net / specs / openid - connect -
registration-1_0.html.

[12] N. Sakimura et al. Openid connect core 1.0. OpenID Foundation, Nov. 2014. url: http :
//openid.net/specs/openid-connect-core-1_0.html.

44

https://id4me.org/documents/
http://www.ietf.org/rfc/rfc7518.txt
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-12
https://tools.ietf.org/html/rfc1034
https://www.owasp.org/index.php/Clickjacking
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Clickjacking_Defense_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Clickjacking_Defense_Cheat_Sheet.md
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.md
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html

	Summary
	Project Timeline
	Methodology
	General Conditions and Scope
	Scenario Description
	Overview of Weaknesses, Recommendations, and Information
	Weaknesses
	H01 Signature Exclusion at the Identity Agent
	M01 Insufficient Clickjacking Protections
	M02 User Enumeration
	M03 Missing Binding Between HTTP Parameter sessionID and Session Cookies
	M04 Insufficient Cross-site Request Forgery Protection
	M05 Faulty Session Management
	M06 Identity Authority Allows HTTP Redirect URIs
	L01 Missing Brute Force Protections
	L02 Denial-of-Service Attack at the Identity Agent

	Recommendations
	R01 Issue a New Access Token to Access the Identity Agent at Userinfo Endpoint
	R02 Implement Access Tokens as One-Time-Use Tokens at Identity Agent
	R03 Revoke Authorization Code When It Is Redeemed Using False Client Credentials
	R04 Revoke Tokens If the Related Authorization Code Is Redeemed a Second Time
	R05 Revoke Tokens When the User Changes his Password
	R06 Implement Refresh Tokens as One-Time-Use Tokens
	R07 Revoke Tokens When a Refresh Token Is Redeemed a Second Time
	R08 Prevent Concurrent Logins
	R09 Secure Cookies with HttpOnly Flag
	R10 Secure Cookies with Secure Flag
	R11 Enforce HTTP Stricts Transport Security
	R12 Restrict Cross-Origin Resource Sharing to Whitelist
	R13 Enable Content Security Policy
	R14 Set XSS Protection HTTP Header
	R15 Disable Referer HTTP Header
	R16 Disable Content Type Sniffing
	R17 Set Cache Control HTTP Headers
	R18 Use Discovery Mechanism at Identity Agent

	Information
	I01 Information Disclosure on the Consent Page

	Further Evaluations
	OpenID Connect Parameters
	Authorization Code
	Access Token
	Refresh Token
	Client Registration Endpoint
	End Session Endpoint
	Introspection Endpoint
	Revocation Endpoint
	Token Endpoint
	Userinfo Endpoints
	Updating Stored Claims
	Open Redirects
	Cross-site Scripting
	XML-based Attacks
	TLS Configuration

	References

