
Penetration Test Report:

DENIC ID Relying Party - Member

Login
Version: 1.2

25.07.2019

Dr. Juraj Somorovsky
Phone: (+49)(0)234 / 45930961 | E-Mail: Juraj.Somorovsky@hackmanit.de

https://hackmanit.de/

Project Information

Customer: DENIC eG
Kaiserstraÿe 75 - 77
60329 Frankfurt am Main, Deutschland

Contact: Marcos Sanz

Commissioned to: Hackmanit GmbH
Universitätsstraÿe 150
44801 Bochum, Germany

Project executive: Dr. Juraj Somorovsky
Phone: (+49)(0)234 / 45930961
Fax: (+49)(0)234 / 45930960
E-Mail: Juraj.Somorovsky@hackmanit.de

Project members: Mario Korth (Hackmanit GmbH)
Dr. Christian Mainka (Hackmanit GmbH)
Karsten Meyer zu Selhausen (Hackmanit GmbH)
Dr. Vladislav Mladenov (Hackmanit GmbH)

Project period: June 4, 2019 � June 11, 2019

Version of the report: 1.2

This report was technically veri�ed by Dr. Christian Mainka.
This report was linguistically veri�ed by David Herring.

Hackmanit GmbH
Represented by: Prof. Dr. Jörg Schwenk, Dr. Juraj Somorovsky,
Dr. Christian Mainka, Dr. Marcus Niemietz
Register court: Bochum, Germany
Register number: 14896

1

https://hackmanit.de/
https://hackmanit.de/
https://hackmanit.de/
https://hackmanit.de/
https://hackmanit.de/
https://hackmanit.de

Contents

Contents

1 Summary 3

2 Project Timeline 4

3 Methodology 4

4 General Conditions and Scope 4

5 Scenario Description 5

6 Overview of Weaknesses and Recommendations 8

7 Weaknesses 10

7.1 M01 Valid OpenID Connect Flow with a Missing state Parameter 10
7.2 M02 Insu�cient Cross-Site Request Forgery Protection 11
7.3 M03 Faulty Session Management and Missing Fresh Cookie Generation . 12
7.4 L01 Valid OpenID Connect Flow with a Replayed state Parameter . . . 13
7.5 L02 Enforce Strict Comparisons for the Values of ID Token Claims . . . 14
7.6 L03 Enforce Validation of iat and exp Claims in the ID Token 15

8 Recommendations 17

8.1 R01 Use the OpenID Connect Parameter nonce 17
8.2 R02 Repeating Values in Ephemeral TLS-ECDH Keys 17
8.3 R03 Remove References to CRYPT_RSA . 19
8.4 R04 Prevent the Use of Uninitialized Values 19
8.5 R05 Potentially Insecure XML Parsing of RSA Keys 19

9 Further Evaluations 21

9.1 Binding Between Cookies and the state Parameter 21
9.2 Changing the OpenID Connect Flow . 21
9.3 ID Token Validations . 21

9.3.1 Claim Validations . 21
9.3.2 Replacing the ID Token in the Token Response 23
9.3.3 Signature Exclusion . 23
9.3.4 Key Information . 23

9.4 Covert Redirect . 24
9.5 Malicious Values for the state Parameter 24
9.6 TLS Con�guration . 25

10 References 29

2

1 Summary

1 Summary

DENIC ID is the �rst widely-deployed implementation of the ID4me protocol [1]. ID4me is
a novel protocol for federated identity management whose two main goals are to provide
(1) Authorization of a user for access to any third party accepting ID4me identi�ers
and (2) Controlled communication of the user's personal information to the third parties
accessed by the user [1]. ID4me is based on well-established standards such as OpenID
Connect [8] and the domain name system (DNS) [4].

Hackmanit GmbH was commissioned to perform a penetration test on a relying party in
the context of DENIC ID - the new DENIC Member Login page. The penetration test
was performed remotely with a total expense of 11 PT.

Weaknesses. During the penetration test, three weaknesses classi�ed as Medium were
identi�ed. Two of these weaknesses relate to the insu�cient protection against cross-site
request forgery (CSRF) attacks. First, the login page does not contain CSRF protection
mechanisms like CSRF tokens, which allows an attacker to force a victim to start an
authentication �ow without its consent. Second, the presence of the state parameter,
which is used to protect against CSRF attacks in the OpenID Connect protocol, is not
enforced by the relying party. This enables an attacker to log a victim into an account
controlled by the attacker which might result in the victim revealing personal information
or �les to the attacker. The third weakness could allow an attacker to compromise the
account of a victim due to faulty session and cookie management when the victim logs in
again after a successful logout using the same browser. Some of the weaknesses identi�ed
during the penetration test are weaknesses in the library OpenID-Connect-PHP1 which
the tested relying party is based on. We responsibly disclosed these weaknesses to the
library developers in June 2019 and supported them by implementing security �xes.

Structure. The report is structured as follows: In Section 2, the timeline of the pene-
tration test is listed. Section 3 introduces our methodology, and Section 4 explains the
general conditions and scope of the penetration test. In section 5, the scenario of the
penetration test is described in detail. Section 6 provides an overview of the identi�ed
weaknesses and further recommendations. In Section 7, all identi�ed weaknesses are dis-
cussed in detail and speci�c countermeasures are described. Section 8 summarizes our
recommendations resulting from observations of the application. Finally, Section 9 lists
additional tests that did not reveal any weaknesses.

1https://github.com/jumbojett/OpenID-Connect-PHP

3

https://hackmanit.de/
https://github.com/jumbojett/OpenID-Connect-PHP

4 General Conditions and Scope

2 Project Timeline

The penetration test was performed remotely between June 4, 2019 and June 11, 2019.
Four penetration testers with di�erent technical backgrounds were involved with a total
expense of 11 PT.

3 Methodology

Among others, the following tools were used for the penetration test:

Tool Link

Mozilla Firefox https://www.mozilla.org/de/firefox/

Google Chrome https://www.google.com/intl/de_ALL/chrome/

Burp Suite Professional https://portswigger.net/burp

EsPReSSO https://github.com/RUB-NDS/BurpSSOExtension

testssl.sh https://testssl.sh/

TLS-Scanner https://github.com/RUB-NDS/TLS-Scanner

Self-developed tools -

Risk Rating. Each weakness has its own CVSS 3.1 base score rating (Common Vulner-
ability Scoring System Version 3.1 Calculator).2,3 Based on the CVSS 3.1 base score, the
following weaknesses assessment is performed:

0.0 � 3.9: Low
4.0 � 6.9: Medium
7.0 � 8.9: High
9.0 � 10.0: Critical

4 General Conditions and Scope

In the scope of the grey-box penetration test was the new DENIC Member Login page
which was accessible at: https://member.secure.denic.de/member-login/new/

In contrast to the old login page, it supports the ID4me implementation, DENIC ID, to
allow users to log in using their DENIC ID identi�er.

In terms of the ID4me standard, the login page represents a relying party which uses ID
tokens issued by an identity authority to identify and authenticate the user during the
login process.

2https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
3https://www.first.org/cvss/v3.1/user-guide

4

https://www.mozilla.org/de/firefox/
https://www.google.com/intl/de_ALL/chrome/
https://portswigger.net/burp
https://github.com/RUB-NDS/BurpSSOExtension
https://testssl.sh/
https://github.com/RUB-NDS/TLS-Scanner
https://member.secure.denic.de/member-login/new/
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://www.first.org/cvss/v3.1/user-guide

5 Scenario Description

The relying party only supports the use of one prede�ned identity authority operated by
DENIC. Therefore, a scenario with multiple identity authorities is explicitly out of the
scope of this penetration test. If an relying party supports more than one identity author-
ity, further security considerations and possible attacks must be taken into account.

5 Scenario Description

DENIC ID is an implementation of ID4me [1] � an �Open, Global, Federated Standard For
The Digital Identity Management�.4 It is based on established standards such as OpenID
Connect and the DNS. In contrast to other single sign-on (SSO) schemes, ID4me divides
the duties of the identity provider (IdP) into two separated entities: an identity agent
and an identity authority. The identity agent provides registration services and manages
user data. The identity authority is responsible for user authentication and authorization.
This role separation results in the following four entities being involved in a login process
based on ID4me:

User A user utilizing ID4me to log in at an online service. His user account is associated
with an ID4me identi�er.

Relying party An online service which supports logins using an ID4me identi�er.

Identity agent The entity providing ID4me services to the user. This includes the regis-
tration and management of ID4me identi�ers as well as storage and distribution of
the user's personal data to relying partys in so-called �claims�.

Identity authority The entity responsible for user authentication and for ensuring that
the user authorized the speci�c relying party to access his personal information.

ID4me identi�ers are used to identify the user when he/she wants to log in at a rely-
ing party. An ID4me identi�er can be any hostname identi�ed by a valid DNS entry
which contains a TXT record. This record speci�es the responsible identity authority and
identity agent.

The process of registering a new ID4me identi�er was not in the scope of this penetration
test. Therefore, it is not described here. Information on the process can be found in the
ID4me documentation [1].

The process of logging in at a relying party using an ID4me identi�er is depicted in
Figure 1 and described in the following:

1. The user starts the login process on the relying party by providing his/her ID4me
identi�er.

4https://id4me.org/about/
5https://gitlab.com/ID4me/documentation/blob/1a8e464b42ef6f57e75ec3c7f1a23e878dbbe42d

/id4me%20Technical%20Overview%20v1.3.pdf

5

https://id4me.org/about/
https://gitlab.com/ID4me/documentation/blob/1a8e464b42ef6f57e75ec3c7f1a23e878dbbe42d/id4me%20Technical%20Overview%20v1.3.pdf
https://gitlab.com/ID4me/documentation/blob/1a8e464b42ef6f57e75ec3c7f1a23e878dbbe42d/id4me%20Technical%20Overview%20v1.3.pdf

5 Scenario Description

Figure 1: Process of logging in at a relying party using an ID4me identi�er. The �gure is
taken from the o�cial ID4me documentation.5

2. The relying party queries the DNS for the user's identi�er to acquire the responsible
identity authority and identity agent.

3. If the relying party is not already registered at the identity authority, it performs
Dynamic Client Registration [7] according to the OpenID Connect standard.

4. The relying party redirects the user to the identity authority. The user authenticates
at the identity authority and authorizes, or rejects, access to the claims requested
by the relying party on the consent page displayed by the identity authority.

5. The identity authority redirects the user back to the relying party and delivers
the authorization code to the relying party in this redirection. The relying party
redeems the authorization code at the token endpoint of the identity authority and
receives an access token and an ID token.

6. If the relying party wants to access claims in addition to the information present
in the ID token, it queries the userinfo endpoint of the identity authority using the
access token. The identity authority makes use of the OpenID Connect distributed
claims mechanism6 and refers the relying party to the identity agent. The relying
party queries the userinfo endpoint of the identity agent using the access token.

7. If the access token is valid, the identity agent provides all claims which the relying
party is authorized to access. If there is no information stored for a requested claim,
the claim is omitted from the identity agent's response.

Despite generally implementing ID4me, DENIC ID di�ers from the standard in some
crucial aspects. ID4me does not cover the trust relationship between the identity agent
and the identity authority; in ID4me every user is allowed to set up and to operate

6https://openid.net/specs/openid-connect-core-1_0.html#AggregatedDistributedClaims

6

https://openid.net/specs/openid-connect-core-1_0.html#AggregatedDistributedClaims

5 Scenario Description

his/her own identity agent. DENIC ID is more speci�c in this regard and only supports
pre-registered identity agents which have a valid contract with the DENIC. Additionally,
DENIC ID suggests that a relying party does not trust every identity authority but only
a list of prede�ned authorities. This limits the degrees of freedom provided by ID4me,
but increases the security by limiting the parties which can participate in the protocol
and establishes more trust between these parties.

The relying party in the scope of this penetration test � the new DENIC Member Login
page � only supports the use of one prede�ned identity authority. For the penetration
test, DENIC con�gured it to use an identity authority operated by us. This allowed us to
craft validly signed ID tokens containing arbitrary information and use them to test the
behavior of the new login page.

Due to the hardcoded con�guration, the relying party does not use the discovery or
dynamic client registration process of the OpenID Connect protocol but always uses pre-
de�ned client credentials and URLs for the invocation of di�erent OpenID Connect end-
points.

We were provided with the following two test accounts which were already registered and
could be linked to DENIC ID identi�ers choosen by us using the DENIC member area:
pentest1 and pentest2.

7

6 Overview of Weaknesses and Recommendations

6 Overview of Weaknesses and Recommendations

Risk Level Finding Reference

M01 Valid OpenID Connect Flow with a Miss-

ing state Parameter: The relying party does
not enforce the presence of the state parameter.

Section 7.1, page 10

M02 Insu�cient Cross-Site Request Forgery

Protection: The new Member Login page does
not provide su�cient protection against CSRF
attacks.

Section 7.2, page 11

M03 Faulty Session Management and Missing

Fresh Cookie Generation: Users retrieve the
same cookies after repeating the login procedure
at the relying party.

Section 7.3, page 12

L01 Valid OpenID Connect Flow with a Re-

played state Parameter: The relying party
does not verify whether the value of the state

parameter has been reused.

Section 7.4, page 13

L02 Enforce Strict Comparisons for the

Values of ID Token Claims: The
OpenID-Connect-PHP library should be modi�ed
to use strict comparisons.

Section 7.5, page 14

L03 Enforce Validation of iat and exp Claims in

the ID Token: The presence of the claims iat

and exp is not enforced.

Section 7.6, page 15

R01 Use the OpenID Connect Parameter nonce:

The relying party should use the nonce parameter.
Section 8.1, page 17

R02 Repeating Values in Ephemeral TLS-

ECDH Keys: The TLS server should be con�g-
ured to always use fresh ECDH ephemeral keys.

Section 8.2, page 17

R03 Remove References to CRYPT_RSA: Any refer-
ence to the obsolete CRYPT_RSA library should be
removed from the relying party.

Section 8.3, page 19

8

6 Overview of Weaknesses and Recommendations

R04 Prevent the Use of Uninitialized Values:

All values used in the authentication process
should be initialized properly.

Section 8.4, page 19

R05 Potentially Insecure XML Parsing of RSA

Keys: The content of RSA keys should be veri-
�ed before parsing them as XML.

Section 8.5, page 19

De�nitions:

Critical Risk Weaknesses classi�ed as Critical can be exploited with very lit-
tle e�ort by an attacker. They have very large negative e�ects
on the tested system, its users and data, or the system environ-
ment.

High Risk Weaknesses classi�ed as High can be exploited with little e�ort
by an attacker. They have a major negative impact on the
tested system, its users and data, or the system environment.

Medium Risk Weaknesses classi�ed as Medium can be exploited with medium
e�ort by an attacker. They have a medium negative impact on
the tested system, its users and data, or the system environ-
ment.

Low Risk Weaknesses classi�ed as Low can only be exploited with great
e�ort by an attacker. They have little negative impact on the
tested system, its users and data, or the system environment.

Information Observations classi�ed as Information are usually no weak-
nesses. Examples of these observations are unusual con�gu-
rations and possibly unwanted behavior of the tested system.

Recommendation Recommendation identi�es measures that may increase the se-
curity of the tested system. Implementation is recommended,
but not necessarily required.

9

7 Weaknesses

7 Weaknesses

In the following sections, we list the identi�ed weaknesses. Every weakness has an iden-
ti�cation name which can be used as a reference in the event of questions, or during the
patching phase.

7.1 M01 Valid OpenID Connect Flow with a Missing state

Parameter

Exploitability Metrics Impact Metrics

Attack Vector (AV) Network Con�dentiality Impact (C) Low

Attack Complexity (AC) Low Integrity Impact (I) Low

Privileges Required (PR) Low Availability Impact (A) None

User Interaction (UI) Required Scope (S) Unchanged

Subscore: 2.1 Subscore: 2.5

Overall CVSS Score for M01 : 4.6

General Description. cross-site request forgery (CSRF) is an attack in which an at-
tacker tricks his victim into performing authenticated commands changing the application
state [5] without the victim's consent. In OAuth and OpenID Connect the state parame-
ter is used to mitigate cross-site request forgery (CSRF) attacks. It is randomly generated
by the relying party at the beginning of each authentication �ow. The redirect, which is
used to send the code generated by the identity authority to the relying party, also con-
tains the state parameter. This enables the relying party to verify that the authentication
�ow was triggered by the user.

Weakness. The relying party does not enforce the presence of a state parameter. If the
state parameter is missing and only a valid code is provided, the relying party redeems
the code at the identity authority and uses the issued ID token to successfully log in the
user; see also Figure 2.7

This behavior allows an attacker to force the victim to sign in at the relying party using
the attacker's account.

Countermeasures. The relying party must enforce the presence of the state parameter
and validate that its value matches the value choosen at the beginning of the authentica-
tion �ow.

7Note that a valid fe_typo_user cookie is needed to perform this operation. This cookie can be present

in the user's browser after visiting the relying party or can simply be obtained by triggering the login

procedure at the relying party.

10

7 Weaknesses

Figure 2: Successful session initialization with a missing state parameter.

7.2 M02 Insu�cient Cross-Site Request Forgery Protection

Exploitability Metrics Impact Metrics

Attack Vector (AV) Network Con�dentiality Impact (C) None

Attack Complexity (AC) Low Integrity Impact (I) Low

Privileges Required (PR) None Availability Impact (A) None

User Interaction (UI) Required Scope (S) Unchanged

Subscore: 2.8 Subscore: 1.4

Overall CVSS Score for M02 : 4.3

General Description. CSRF attacks are usually possible since browsers automatically
attach cookies to every HTTP request, regardless of the request origin. Therefore, it's
impossible for the server application to distinguish between a valid user-initiated request
and an invalid request executed without the user's consent.

Weakness. The Member Login page does not apply any CSRF protection. An attacker
could abuse this to force his victim to perform an authentication �ow. If the user is logged
in at the identity authority and the identity authority does not provide any consent page,
the user would perform the complete OpenID Connect authentication �ow and seamlessly
log in at the relying party.

A proof-of-concept attack vector is provided in Listing 1.

11

7 Weaknesses

1 <html>
2 <!−− CSRF PoC − generated by Burp Suite Professional −−>
3 <body>
4 <script>history.pushState('', '', '/')</script>
5 <form action="https://member.secure.denic.de/denic−id−auth/" method="POST">
6 <input type="hidden" name="tx_denicfelogin_id4me[denicid]" value="pentest1.pen

190603de.hckmnt.de" />
7 <input type="hidden" name="pass" value="" />
8 <input type="hidden" name="pid" value="99,2337,2497,2494" />
9 <input type="hidden" name="redirect_url" value="/startseite/" />

10 <input type="hidden" name="tx_felogin_pi1[noredirect]" value="0" />
11 <input type="submit" value="Submit request" />
12 </form>
13 </body>
14 </html>

Listing 1: A proof-of-concept for a CSRF attack forcing the victim to log in.

Countermeasures. We recommend to add CSRF protection to all parts of the web
application which allow the execution of crucial actions. This can be achieved by using
CSRF tokens.

7.3 M03 Faulty Session Management and Missing Fresh Cookie

Generation

Exploitability Metrics Impact Metrics

Attack Vector (AV) Physical Con�dentiality Impact (C) High

Attack Complexity (AC) Low Integrity Impact (I) None

Privileges Required (PR) None Availability Impact (A) None

User Interaction (UI) Required Scope (S) Unchanged

Subscore: 0.7 Subscore: 3.6

Overall CVSS Score for M03 : 4.3

General Description. Proper session management requires that sessions are invalidated
upon logout. OWASP states that �if a session can still be used after logging out, then the
lifetime of the session is increased and that gives third parties that may have intercepted
the session token more (or perhaps in�nite, if no absolute session expiry happens) time
to impersonate a user.�8 Users might want to log out at the relying party for di�erent
reasons and should be able to terminate their sessions. One of the more obvious reasons
is the use of public computers on which users might not use the private mode. Being
unable to log out correctly increases the risk that the user's session is compromised and
an attacker takes over the user's account [6]. After the user logs in again at the web
application, a new fresh session ID must be generated.

8https://owasp-aasvs.readthedocs.io/en/latest/requirement-3.2.html

12

https://owasp-aasvs.readthedocs.io/en/latest/requirement-3.2.html

7 Weaknesses

Weakness. The relying party provides a logout functionality and correctly invalidates
the session ID cookies (fe_typo_user and PHPSESSID) upon logout. However, after per-
forming the authentication �ow with a logged out user again, the relying party does not
generate fresh cookies. Instead, the old cookies (which are still present in the user's
browser) become valid again.

This problem could, for example, allow an attacker to steal cookies after the user logs
out. Once the user performs another login, the cookies become valid again and can be
misused by the attacker.

Countermeasures. The relying party must generate new fresh session ID cookies after
every successful login.

We also recommend to unset the cookies in the user's browser upon logout and restrict
their validity period [6]. Currently, the session ID cookies have no expiration period.

7.4 L01 Valid OpenID Connect Flow with a Replayed state

Parameter

Exploitability Metrics Impact Metrics

Attack Vector (AV) Adjacent

Network

Con�dentiality Impact (C) Low

Attack Complexity (AC) Low Integrity Impact (I) Low

Privileges Required (PR) High Availability Impact (A) None

User Interaction (UI) Required Scope (S) Unchanged

Subscore: 0.7 Subscore: 2.5

Overall CVSS Score for L01 : 3.2

General Description. As described in M01 , the state parameter is used to mitigate
CSRF attacks. In order to ful�ll its purpose, the relying party needs to randomly generate
a new value for the state parameter at the beginning of each authentication �ow and
ensure that each choosen state value is only valid once.

Weakness. The relying party does not correctly validate whether the state parameter
has been reused. When the code generated by the identity authority is submitted to the
relying party, it is possible to reuse an old value for the state parameter. The relying
party accepts the requests (see Figure 3 and Figure 4) and uses the provided code to
obtain tokens at the token endpoint of the identity authority.

This behavior allows an attacker to bypass the CSRF protection usually provided by the
state parameter, if he is able to obtain a valid value from a previous login �ow of the user.
For example, the state could appear in server logs which could leak to an attacker.

13

7 Weaknesses

Figure 3: First authentication response with a valid code and state.

Figure 4: Authentication response with a valid code and a replayed state.

Countermeasures. The state parameter is a one-time-use parameter and the relying
party must ensure that an already used value for the state parameter is not accepted
again.

7.5 L02 Enforce Strict Comparisons for the Values of ID Token

Claims

Exploitability Metrics Impact Metrics

Attack Vector (AV) Adjacent

Network

Con�dentiality Impact (C) None

Attack Complexity (AC) Low Integrity Impact (I) Low

Privileges Required (PR) High Availability Impact (A) None

User Interaction (UI) None Scope (S) Unchanged

Subscore: 0.9 Subscore: 1.4

Overall CVSS Score for L02 : 2.4

14

7 Weaknesses

General Description. In PHP, there are two types of comparison operators: loose and
strict. If a loose operator is used (e.g., ==, <=), the PHP interpreter �rst attempts to
convert the two variables to the same type before performing the actual comparison. If
a strict operator is used (e.g., ===), the comparison returns true if and only if both the
types and values of the variables are equal.

Weakness. We discovered that the underlying OpenID-Connect-PHP library uses loose
comparisons. This leads to comparisons like $claims->iss == $this->getIssuer() evaluat-
ing to True even if $claims->iss is set to the integer 0 and $this->getIssuer() returns a
string. Another example would be the comparison $claims->exp >= time()- $this->leeway.
Setting $claims->exp to True leads to the comparison always evaluating to True. This is
possible since $claims stems from the JSON decoded ID token. Therefore, an attacker
which is able to craft an ID token has full control over the types of the properties.

This weakness a�ects the following claims:

• at_hash

• aud

• exp

• iss

• nbf

Countermeasures. In general, the relying party should use strict comparisons. In PHP,
this requires three comparison operators instead of two. In particular, a strict comparison
for equality uses three equal signs (===). A strict comparison for greater or greater equal
does not exist in PHP. Therefore, it is recommended to verify that the variables are the
correct type before comparing their values.. A truth table for loose and strict comparisons
can be found at https://www.php.net/manual/en/types.comparisons.php.

7.6 L03 Enforce Validation of iat and exp Claims in the ID Token

Exploitability Metrics Impact Metrics

Attack Vector (AV) Adjacent

Network

Con�dentiality Impact (C) None

Attack Complexity (AC) Low Integrity Impact (I) Low

Privileges Required (PR) High Availability Impact (A) None

User Interaction (UI) None Scope (S) Unchanged

Subscore: 0.9 Subscore: 1.4

Overall CVSS Score for L03 : 2.4

General Description. According to the OpenID Connect standard [8] an ID token must
contain two timestamps: One which states the time at which the ID token was issued (iat

15

https://www.php.net/manual/en/types.comparisons.php

7 Weaknesses

claim) and another that states the time at which the ID token expires (exp). The claims
must be validated in the following ways:

1. The current time must be after the time represented by the iat claim.

2. The current time must be before the time represented by the exp claim [8].

Weakness. The underlying OpenID-Connect-PHP library does not enforce the presence
of the claims iat and exp; both claims can be absent. Therefore, the client accepts tokens
which might not expire at all.

Countermeasures. The relying party must enforce that the claims iat and exp are
present in every ID token and that their values are validated within a reasonable time
skew.

16

8 Recommendations

8 Recommendations

In the following sections, we provide our recommendations to improve the security of the
tested system.

8.1 R01 Use the OpenID Connect Parameter nonce

General Description. The OpenID Connect standard suggests to use the nonce param-
eter �to associate a Client session with an ID token, and to mitigate replay attacks� [8].
The relying party randomly chooses a value for the nonce parameter and sends it to the
identity authority in the authentication request. The identity authority later adds this
value to the issued ID token. The relying party must verify that the nonce parameter
is present when it receives the ID token, and contains the same value which was chosen
earlier for this speci�c protocol �ow.

Recommendation. We recommend to further increase the security of the relying party
and the protection against well-known attacks, such as CSRF and replay attacks, by
adding a binding between the authentication request and the ID token. This is achieved
using the OpenID Connect parameter nonce in the way described above.

8.2 R02 Repeating Values in Ephemeral TLS-ECDH Keys

General Description. When performing a TLS-ECDHE handshake, the server sends a
fresh elliptic curve (EC) key in the ServerKeyExchange message. The key should always
be generated at random in order to achieve perfect forward secrecy.

Our tests with TLS-Scanner revealed that the server caches the EC key values and uses
the same EC key for multiple connections. See Figure 5 and Figure 6.

17

8 Recommendations

Figure 5: First TLS handshake performed with member.secure.denic.de.

Figure 6: Second TLS handshake performed with member.secure.denic.de. The EC key
used is identical to the �rst handshake (see Figure 5).

Recommendation. We recommend con�guring the TLS server to use fresh ephemeral
keys for every handshake.

18

8 Recommendations

8.3 R03 Remove References to CRYPT_RSA

General Description.

We discovered that the underlying OpenID-Connect-PHP library still contains references
to the superseded and unsupported library CRYPT_RSA.9 While the superseding library
phpseclib/Crypt/RSA10 is still maintained, the CRYPT_RSA library received it's last up-
date �ve years ago.11

Recommendation. We recommend removing any reference to the library CRYPT_RSA in
the underlying OpenID-Connect-PHP library and use the phpseclib/Crypt/RSA library
instead.

8.4 R04 Prevent the Use of Uninitialized Values

General Description. The underlying library uses values from the session. However,
the session which the library uses can be di�erent from the session the application itself
uses. Therefore, it could be possible to complete an authentication �ow without providing
the session ID required by the library. This would lead to the usage of uninitialized values,
which can lead to unintended behavior.

Recommendation. We recommend implementing proper checks for uninitialized values.
If a value isn't initialized, i.e., if something goes wrong during the authentication �ow,
it's recommended to abort the authentication �ow.

8.5 R05 Potentially Insecure XML Parsing of RSA Keys

General Description. In order to verify the RSA signature of an ID token, the client has
to obtain the RSA public key. This key can be obtained by accessing the JSON-formated
JWKS �le provided by the identity authority.

When verifying the RSA signature, the OpenID-Connect-PHP library reads the provided
JWKS �le, extracts the particular RSA key, and puts it directly into the XML key format
for �simple� processing.12 The key is then loaded using the load function of the phpseclib
library.13

9https://pear.php.net/package/Crypt_RSA
10https://github.com/phpseclib/phpseclib/tree/master/phpseclib/Crypt
11https://github.com/pear/Crypt_RSA
12See the verifyRSAJWTsignature function: https://github.com/jumbojett/OpenID-Connect-PHP/

blob/62d557c86d9b2b8607e254064bda400c8fccf656/src/OpenIDConnectClient.php#L809
13See: https://github.com/phpseclib/phpseclib/blob/master/phpseclib/Crypt/RSA/Keys/XML.

php#L45

19

https://pear.php.net/package/Crypt_RSA
https://github.com/phpseclib/phpseclib/tree/master/phpseclib/Crypt
https://github.com/pear/Crypt_RSA
https://github.com/jumbojett/OpenID-Connect-PHP/blob/62d557c86d9b2b8607e254064bda400c8fccf656/src/OpenIDConnectClient.php#L809
https://github.com/jumbojett/OpenID-Connect-PHP/blob/62d557c86d9b2b8607e254064bda400c8fccf656/src/OpenIDConnectClient.php#L809
https://github.com/phpseclib/phpseclib/blob/master/phpseclib/Crypt/RSA/Keys/XML.php#L45
https://github.com/phpseclib/phpseclib/blob/master/phpseclib/Crypt/RSA/Keys/XML.php#L45

8 Recommendations

This type of processing allows a malicious identity authority to inject arbitrary XML
contents into the parsed XML structure. Note that we were not able to �nd any speci�c
attack vector to exploit this feature.

Recommendation. Although we were unable to �nd any practical exploit, we recom-
mend to harden the RSA key parsing process. The OpenID-Connect-PHP library should
only accept valid RSA keys before injecting their contents into the XML structure.

20

9 Further Evaluations

9 Further Evaluations

In this section, we list further evaluations we conducted in our penetration test. It provides
useful information for future security evaluations.

9.1 Binding Between Cookies and the state Parameter

As described in M01 , the relying party does not enforce the presence of the state pa-
rameter. The relying party must also ensure that its value is bound to the user's session
in order to prevent CSRF attacks. We veri�ed that if the state parameter is present in
the request, then its value is correctly bound to the session cookie fe_typo_user.

9.2 Changing the OpenID Connect Flow

The relying party utilizes the OpenID Connect code �ow (response_type=code), to obtain
an access token and an ID token. If the hybrid �ow (response_type=code id_token or
response_type=code token id_token) is used instead, the login process is still successful.
However, the relying party uses the ID token delivered in the back-channel to log in the
user, similarly to the code �ow. It seems to ignore the tokens delivered in the front-channel
completely; delivering an ID token which has expired, contains an invalid signature, or a
DENIC ID identi�er other than the one speci�ed by the ID token delivered in the back-
channel does not result in an error, and seems not to in�uence the login process in any
way.

If the implicit �ow (response_type=id_token or response_type=id_token token) is used in-
stead of the code �ow, the login process is not successful. Independently of how the
tokens are delivered in the authentication response, (in the query string or the fragment)
the login process is not successful and the following error message is displayed: Login

fehlgeschlagen [...] Die eingegebenen Zugangsdaten sind ungültig. The re-
lying party seems to ignore the tokens delivered in the front-channel and tries to obtain
tokens in the back-channel by issuing a token request to the token endpoint of the identity
authority, similarly to the code �ow. However, the relying party did not receive a code
to redeem from the identity authority and the value of the code parameter in the token
request is an empty string.

9.3 ID Token Validations

9.3.1 Claim Validations

Duplicate Claims. If a claim is present in an ID token more than once, the relying
party always uses its second appearance for all validation steps and further processing.

21

9 Further Evaluations

The �rst appearance is ignored. It was not possible to �confuse� the relying party to use
one of the appearances for one purpose and the other appearance for another purpose.

id4me.identifier. The relying party uses the value of the id4me.identifier claim to deter-
mine the user identity. It validates whether the value matches the DENIC ID identi�er
which the user entered at the beginning of the login process and rejects the ID token
otherwise. Injecting di�erent malicious payloads in the value of the id4me.identifier

claim does not result in successful attacks or verbose error messages. Di�erent cross-site
scripting (XSS) and SQL injection (SQLi) payloads all result in the same error message
being displayed on the login page: Login fehlgeschlagen [...] Die eingegebenen

Zugangsdaten sind ungültig.

aud and iss. The relying party enforces that both the aud and iss claims are present
in the ID token which was issued by the identity authority. The value of both claims
must not be an arbitrary or empty string but instead needs to be the client ID of the
relying party for the aud, and the correct issuer property of the identity authority for the
iss claim. However, as described in L02 , it is possible to bypass the validation of these
claims by setting their value to an integer instead of a string. All tested values besides
the expected string or an integer result in an error message similar to this: Oops, an error

occurred! Code: 201906051317374364a8d4.

sub. According to the OpenID Connect standard [8] an ID token must contain a sub claim.
However, the relying party does not enforce the presence of a sub claim in an ID token.
It seems that the relying party ignores the sub claim if it is present and accepts ID tokens
independently of the presence or value of the sub claim. Although this behavior is not
compliant to the OpenID Connect standard, it is not classi�ed as a weakness because the
id4me.identifier is used to identify the user instead.

nbf. ID tokens are JSON web tokens (JWTs). According to the standard [3] a JWT can
contain a third timestamp in addition to the iat and exp claims. The nbf claim states
a time, before which, the token given must not be accepted for processing. If this claim
is present, the relying party validates its value and rejects an ID token if the timestamp
states a time in the future. However, the same mistakes during the validation, as described
in L02 , also apply to the nbf claim.

at_hash. The OpenID Connect standard de�nes an optional claim which binds the ID
token to an access token by containing a hash value of this access token. If the optional
at_hash claim is present in an ID token, the relying party validates its value. Otherwise,
it displays an error message if the value is an arbitrary or empty string, an integer, or
the boolean false. However, setting the value to the boolean true bypasses the validation
and the relying party accepts the ID token. This behavior results from the same mistakes
during the validation, as described in L02 .

22

9 Further Evaluations

9.3.2 Replacing the ID Token in the Token Response

The relying party does not accept values for the ID token which have a type other than
string. We evaluated the following values for the ID token in the Token Response:

• true

• 1

• 0

All tested values result in an error message similar to this: Oops, an error occurred! Code

: 201906061323214e5cc09a.

9.3.3 Signature Exclusion

• The relying party enforces that ID tokens issued by the identity authority are se-
cured by a valid signature or HMAC. Removing or invalidating the signature or
HMAC results in an error being displayed to the user: Oops, an error occurred!

Code: 201906061323214e5cc09a.

• While the JSON Web Signature standard [2] speci�es the usage of None as a valid
algorithm used for the calculation of the signature, the relying party rejects ID
tokens which contain the value None in the alg header �eld. The relying party
displays the following error message to the user if it receives an ID token using the
None algorithm: Oops, an error occurred! Code: 201906061324556ffa5099.
Other values for the alg header �eld including none, NONE, NoNe, plain, or test result
in a similar error message.

9.3.4 Key Information

The relying party always requests the JWKS �le of the identity authority (located at https
://*iauth-url*/jwks) and uses the public keys provided in this �le to verify the signatures
of ID tokens. The following manipulations were conducted to make the relying party use
a di�erent key instead:

• Placing a key in the header of the ID token using the jwk claim.

• Placing a certi�cate in the header of the ID token using the x5c claim.

• Referencing an external url to access the key in the header of the ID token using
the jku claim.

• Referencing an external URL to access the certi�cate in the header of the ID token
using the x5u claim.

• Referencing an external url to access the key in the JWKS �le using the jku claim.

23

9 Further Evaluations

• Referencing an external url to access the certi�cate in the JWKS �le using the x5u

claim.

The relying party does not invoke URLs speci�ed in the jku or x5u claim and ignores
keys/certi�cates provided in the jkw or x5c claim. Instead, it always uses the keys directly
provided in the JWKS �le.

9.4 Covert Redirect

The POST request sent to the relying party (i.e., when the DENIC ID identi�er is entered
on the login page) contains a parameter called redirect_url. The default value of this
parameter is /startseite/.

We evaluated di�erent manipulated values for the parameter including:

• /startseite1111/

• /startseite/1111/

• https://member.secure.denic.de/mydenic/denic-id-verwalten/

• @attacker.de/startseite/

• attacker.com/startseite/

• http://attacker.com/startseite/

• /../

• /startseite/../

• javascript:alert(1)

In addition, we removed the value of the parameter and the parameter itself.

None of the manipulations was successful; the user was always redirected to https://member

.secure.denic.de/startseite/ at the end of a successful login process and to https://member

.secure.denic.de/denic-id-auth/ if there was an error during the login process.

9.5 Malicious Values for the state Parameter

The value of the state parameter is initially chosen by the relying party when a new login
�ow is initiated. It is re�ected to the relying party in the authentication response by the
identity authority later. Injecting di�erent malicious payloads in the value of the state

parameter does not result in successful attacks or verbose error messages. Di�erent XSS
and SQLi payloads all result in the same error message displayed on the login page: Login
fehlgeschlagen [...] Die eingegebenen Zugangsdaten sind ungültig.

24

9 Further Evaluations

9.6 TLS Con�guration

We tested the TLS con�guration of the relying party with testssl.sh and TLS-Scanner. We
did not �nd any con�guration issues beyond the repeating ephemeral values summarized
in R01 . The server is not vulnerable to any relevant attack. It only supports TLS 1.2
and secure cryptographic algorithms.

The results of TLS-Scanner are provided in Listing 2.

1 Supported Protocol Versions
2

3 TLS12
4

5 −−
6 Supported Ciphersuites
7

8 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
9 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

10 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
11 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
12

13 −−
14 Symmetric Supported
15

16 Null : false
17 Export : false
18 Anon : false
19 DES : false
20 SEED : false
21 IDEA : false
22 RC2 : false
23 RC4 : false
24 3DES : false
25 AES : true
26 CAMELLIA : false
27 ARIA : false
28 CHACHA20 POLY1305 : false
29

30 −−
31 KeyExchange Supported
32

33 RSA : false
34 DH : false
35 ECDH : true
36 GOST : false
37 SRP : Unknown
38 Kerberos : false
39 Plain PSK : false
40 PSK RSA : false
41 PSK DHE : false
42 PSK ECDHE : false
43 Fortezza : false
44 New Hope : false
45 ECMQV : false
46

47 −−
48 Perfect Forward Secrecy
49

50 Supports PFS : true
51 Prefers PFS : true
52 Supports Only PFS : true
53

54 −−
55 Cipher Types Supports
56

25

9 Further Evaluations

57 Stream : false
58 Block : true
59 AEAD : true
60

61 −−
62 Ciphersuite General
63

64 Enforces Ciphersuite ordering : true
65

66 −−
67 Supported Extensions
68

69 EC_POINT_FORMATS
70 EXTENDED_MASTER_SECRET
71 RENEGOTIATION_INFO
72

73 −−
74 Supported Named Groups
75

76 SECP256R1
77 ECDH_X25519
78 SECP384R1
79

80 −−
81 Supported Compressions
82

83 NULL
84

85 −−
86 Common Bugs [EXPERIMENTAL]
87

88 Version Intolerant : false
89 Ciphersuite Intolerant : false
90 Extension Intolerant : false
91 CS Length Intolerant (>512 Byte) : false
92 Compression Intolerant : false
93 ALPN Intolerant : false
94 CH Length Intolerant : false
95 NamedGroup Intolerant : false
96 Empty last Extension Intolerant : false
97 SigHashAlgo Intolerant : false
98 Big ClientHello Intolerant : false
99 2nd Ciphersuite Byte Bug : false

100 Ignores o�ered Ciphersuites : false
101 Re�ects o�ered Ciphersuites : false
102 Ignores o�ered NamedGroups : false
103 Ignores o�ered SigHashAlgos : false
104

105 −−
106 Attack Vulnerabilities
107

108 Padding Oracle : false
109 Bleichenbacher : false
110 CRIME : false
111 Breach : false
112 Invalid Curve : false
113 Invalid Curve Ephemerals : false
114 SSL Poodle : false
115 TLS Poodle : false
116 CVE−20162107 : false
117 Logjam : false
118 Sweet 32 : false
119 DROWN : false
120 Heartbleed : false
121 EarlyCcs : false
122

123 −−

26

9 Further Evaluations

124 RFC
125

126 Checks MAC (AppData) : correct
127 Checks MAC (Finished) : correct
128 Checks VerifyData : correct
129

130 −−
131 Certi�cates
132

133 Fingerprint : f9caa681bc02bbfe4b4183137db0190d4355823de0ca285fb3e34f978aac01a6
134 Subject : SERIALNUMBER=GnR 770,1.3.6.1.4.1.311.60.2.1.3=DE,BusinessCategory=Private Organization,C=DE,

PostalCode=60329,ST=Hessen,L=Frankfurt am Main,STREET=Kaiserstr. 75−77,O=DENIC eG,OU=IT Services,
OU=Authorized by United SSL,OU=COMODO EV SSL,CN=member.secure.denic.de

135 CommonNames : #311f301d060355040313166d656d6265722e7365637572652e64656e69632e6465
136 Valid From : Wed Jan 17 01:00:00 CET 2018
137 Valid Till : Thu Feb 06 00:59:59 CET 2020
138 PublicKey : RSA Public Key [68:ed:4e:f1:7c:1d:ce:41:7f:bf:7d:7d:40:9f:73:82:e2:ad:3b:c1]
139 modulus: d37aab82cf4fac3cf5b28f8c34a651bf36f572bbe687dde56d46919e9d29b05b1c855904aec2aee6948574b7731657099f32

fa2d6576a8991459171e85987b9bbe2f030aba3ddebf59835783be7dbe35a50c7285279e5aa4bea6f952506ea2fe5e70e1e6f
027748c93c5976361f63360066d6f18de9c488abaeccfa43535af3471e4cfb69497a66826a67aedc�b32c3d2fe33315b882e1ca1a
0f4f5a479c1c768bac79138826e828cb32a86bc89e88e641363217841ada7067f82bcd307984230a5ba181f9068855302bd6e1f
791db5de311b5b74d40e8648755d2bad14b18efb8b78bf4eee59b370593c58afe4bcd5e90e9de209914baa9d381c6ba002d0b7

140 public exponent: 10001
141

142 Issuer : C=GB,ST=Greater Manchester,L=Salford,O=COMODO CA Limited,CN=COMODO RSA Extended
Validation Secure Server CA

143 Signature Algorithm : RSA
144 Hash Algorithm : SHA256
145 ROCA (simple) : false
146 Fingerprint : 7e0e16c0056f41a9f4c61f571503c3bcf079e2bddb228bf2219ac31200496b5c
147 Subject : C=GB,ST=Greater Manchester,L=Salford,O=COMODO CA Limited,CN=COMODO RSA Extended

Validation Secure Server CA
148 CommonNames : #313830360603550403132f434f4d4f444f2052534120457874656e6465642056616c69646174696f6e

2053656375726520536572766572204341
149 Valid From : Sun Feb 12 01:00:00 CET 2012
150 Valid Till : Fri Feb 12 00:59:59 CET 2027
151 PublicKey : RSA Public Key [a2:26:20:54:4e:0a:e3:47:b6:74:41:da:e5:2f:ae:9d:01:12:54:d9]
152 modulus: 9556de54b4dfd502497bd15b5ca2b21e8f9c2b624c2b8d1228f31a95a3c610fd29dee19f0b384093d1ef6e9510fce

19017772cee753e7b63ec61926e4f3bab80496bdf00ea03007f2f75d5282fec56678f8083a3bddc0399938b9491565ba1b86a3a3
f06bd0e92cc609cfdb5e09f66305fdbe694f0956aafc88aaf80d9e68839017c1cc0c52af77b95a0f276ab6d9b723930ebd
15755019d58119d7c6d848f49e89d09fc3cfd0a4a7614215c167340231974c3ba580aa6962ede36e59fd0c2f0e1e0c162e3c
218451951aa171ee82375d4c8d09613�c724d18c0b27ae9e7adc3a61636088972d5d050be53bebaece3a477376a8fa2cddc
08717e9ac3099f81f

153 public exponent: 10001
154

155 Issuer : C=GB,ST=Greater Manchester,L=Salford,O=COMODO CA Limited,CN=COMODO RSA Certi�cation
Authority

156 Signature Algorithm : RSA
157 Hash Algorithm : SHA384
158 ROCA (simple) : false
159 Fingerprint : 4f32d5dc00f715250abcc486511e37f501a899deb3bf7ea8adbbd3aef1c412da
160 Subject : C=GB,ST=Greater Manchester,L=Salford,O=COMODO CA Limited,CN=COMODO RSA Certi�cation

Authority
161 CommonNames : #312b302906035504031322434f4d4f444f205253412043657274696669636174696f6e20417574686f72697479
162 Valid From : Tue May 30 12:48:38 CEST 2000
163 Valid Till : Sat May 30 12:48:38 CEST 2020
164 PublicKey : RSA Public Key [2e:30:a8:20:a9:7e:d4:33:04:78:84:53:7d:4d:c1:5d:0d:0d:6f:04]
165 modulus: 91e85492d20a56b1ac0d24ddc5cf446774992b37a37d23700071bc53dfc4fa2a128f4b7f1056bd9f7072b7617fc94b0f17a

73de3b00461ee�1197c7f4863e0afa3e5cf993e6347ad9146be79cb385a0827a76af7190d7ecfd0dfa9c6cfadfb082f4147ef9bec4
a62f4f7f997fb5fc674372bd0c00d689eb6b2cd3ed8f981c14ab7ee5e36efcd8a8e49224da436b62b855fdeac1bc6cb68bf30e8d9
ae49b6c6999f878483045d5ade10d3c4560fc32965127bc67c3ca2eb66bea46c7c720a0b11f65de4808baa44ea9f283463784ebe
8cc814843674e722a9b5cbd4c1b288a5c227bb4ab98d9eee05183c309464e6d3e99fa9517da7c3357413c8d51ed0bb65caf2c
631adf57c83fbce95dc49baf4599e2a35a24b4baa9563dcf6faa�4958bef0a8�f4b8ade937fbbab8f40b3af9e843421e89d884cb
13f1d9bbe18960b88c2856ac141d9c0ae771ebcf0edd3da996a148bd3cf7afb50d224cc01181ec563bf6d3a2e25bb7b
204225295809369e88e4c65f191032d707402ea8b671529695202bbd7df506a5546bfa0a328617f70d0c3a2aa2c21aa47ce289c
064576bf821827b4d5aeb4cb50e66bf44c867130e9a6df1686e0d8�40ddfbd042887fa3333a2e5c1e41118163ce18716b2beca
68ab7315c3a6a47e0c37959d6201aa�26a98aa72bc574ad24b9dbb10fcb04c41e5ed1d3d5e289d9cccbfb351daa747e58453

27

9 Further Evaluations

166 public exponent: 10001
167

168 Issuer : C=SE,O=AddTrust AB,OU=AddTrust External TTP Network,CN=AddTrust External CA Root
169 Signature Algorithm : RSA
170 Hash Algorithm : SHA384
171 ROCA (simple) : false
172

173 −−
174 Certi�cate Checks
175

176 Expired Certi�cates : false
177 Not yet Valid Certi�cates : false
178 Weak Hash Algorithms : false
179 Weak Signature Algorithms : false
180 Matches Domain : Unknown
181 Only Trusted : Unknown
182 Contains Blacklisted : Unknown
183

184 −−
185 HSTS
186

187 HSTS : true
188 HSTS Preloading : false
189 max−age (seconds) : 15552000
190

191 −−
192 HTTPS Response Header
193

194 Date:Mon, 10 Jun 2019 20:38:18 GMT
195 Server:Apache
196 Location:https://member.secure.denic.de/startseite/
197 Content−Length:249
198 Content−Type:text/html; charset=iso−8859−1
199 Content−Security−Policy:style−src 'self' 'unsafe−inline' https://fonts.googleapis.com; object−src 'self'; script−src 'self'

https://www.googletagmanager.com https://www.google−analytics.com 'unsafe−inline'; img−src 'self' https://www
.denic.de https://www.google−analytics.com; frame−src 'self'

200 X−Content−Security−Policy:style−src 'self' 'unsafe−inline' https://fonts.googleapis.com; object−src 'self'; script−src '
self' https://www.googletagmanager.com https://www.google−analytics.com 'unsafe−inline'; img−src 'self' https://
www.denic.de https://www.google−analytics.com; frame−src 'self'

201 X−XSS−Protection:1; mode=block
202 X−Content−Type−Options:nosni�
203 X−Frame−Options:SAMEORIGIN
204 X−Varnish:18417071
205 Age:0
206 Via:1.1 varnish−v4
207 Strict−Transport−Security:max−age=15552000
208 Connection:keep−alive
209

210 −−
211 PublicKey Parameter
212

213 EC PublicKey reuse : true
214 DH PublicKey reuse : false
215 Uses Common DH Primes : false
216 Uses Non−Prime Moduli : false
217 Uses Nonsafe−Prime Moduli : false

Listing 2: An excerpt of the TLS-Scanner scan report for member.secure.denic.de

28

10 References

10 References

[1] Vittorio Bertola. ID4me Technical Overview. https://id4me.org/documents/.
2018.

[2] M. Jones, J. Bradley, and N. Sakimura. JSON Web Signature (JWS). RFC 7515
(Proposed Standard). Internet Engineering Task Force, May 2015. url: https://
tools.ietf.org/html/rfc7515.

[3] M. Jones, J. Bradley, and N. Sakimura. JSON Web Token (JWT). RFC 7519 (Pro-
posed Standard). Internet Engineering Task Force, May 2015. url: https://tools.
ietf.org/html/rfc7519.

[4] P.V. Mockapetris. Domain names - concepts and facilities. RFC 1034 (Proposed
Standard). Internet Engineering Task Force, Nov. 1987. url: https://tools.ietf.
org/html/rfc1034.

[5] OWASP. Cross-Site Request Forgery (CSRF). 2016. url: https://www.owasp.org/
index.php/Cross-Site_Request_Forgery_(CSRF).

[6] OWASP. Session Management Cheat Sheet. https://www.owasp.org/index.php/
Session_Management_Cheat_Sheet.

[7] N. Sakimura, J. Bradley, and M. Jones. OpenID Connect Dynamic Client Registration
1.0. OpenID Foundation, Nov. 2014. url: http://openid.net/specs/openid-
connect-registration-1_0.html.

[8] N. Sakimura et al. Openid connect core 1.0. OpenID Foundation, Nov. 2014. url:
http://openid.net/specs/openid-connect-core-1_0.html.

29

https://id4me.org/documents/
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc1034
https://tools.ietf.org/html/rfc1034
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html

	Summary
	Project Timeline
	Methodology
	General Conditions and Scope
	Scenario Description
	Overview of Weaknesses and Recommendations
	Weaknesses
	M01 Valid OpenID Connect Flow with a Missing |state| Parameter
	M02 Insufficient Cross-Site Request Forgery Protection
	M03 Faulty Session Management and Missing Fresh Cookie Generation
	L01 Valid OpenID Connect Flow with a Replayed |state| Parameter
	L02 Enforce Strict Comparisons for the Values of ID Token Claims
	L03 Enforce Validation of |iat| and |exp| Claims in the ID Token

	Recommendations
	R01 Use the OpenID Connect Parameter |nonce|
	R02 Repeating Values in Ephemeral TLS-ECDH Keys
	R03 Remove References to CRYPT_RSA
	R04 Prevent the Use of Uninitialized Values
	R05 Potentially Insecure XML Parsing of RSA Keys

	Further Evaluations
	Binding Between Cookies and the |state| Parameter
	Changing the OpenID Connect Flow
	ID Token Validations
	Claim Validations
	Replacing the ID Token in the Token Response
	Signature Exclusion
	Key Information

	Covert Redirect
	Malicious Values for the |state| Parameter
	TLS Configuration

	References

